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Preface to the Sixth Edition

This book was originally conceived as a text for students in their final year reading for an honours
degree in engineering that included turbomachinery as a main subject. It was also found to be a useful
support for students embarking on post-graduate courses at masters level. The book was written for
engineers rather than for mathematicians, although some knowledge of mathematics will prove most
useful. Also, it is assumed from the start that readers will have completed preliminary courses in fluid
mechanics. The stress is placed on the actual physics of the flows and the use of specialised mathema-
tical methods is kept to a minimum.

Compared to the fifth edition this new edition has had a large number of changes made in style of
presentation, new ideas and clarity of explanation. More emphasis is given to the effects of compres-
sibility to match the advances made in the use of higher flow and blade speeds in turbomachinery. In
Chapter 1, following the definition of a turbomachine, the fundamental laws of flow continuity, the
energy and entropy equations are introduced as well as the all-important Euler work equation,
which applies to all turbomachines. In Chapter 2 the main emphasis is given to the application of
the “similarity laws,” to dimensional analysis of all types of turbomachine and their performance char-
acterisics. The important ideas of specific speed and specific diameter emerge from these concepts and
their application is illustrated in the Cordier Diagram, which shows how to select the machine that will
give the highest efficiency for a given duty. Did you realise that the dental drill is actually a turboma-
chine that fits in very well with these laws? Also, in this chapter the basics of cavitation within pumps
and hydraulic turbines are examined.

The measurement and understanding of cascade aerodynamics is the basis of modern axial turbo-
machine design and analysis. In Chapter 3, the subject of cascade aerodynamics is presented in pre-
paration for the following chapters on axial turbines and compressors. This chapter has been
completely reorganised relative to the fifth edition. It starts by presenting the parameters that define
the blade section geometry and performance of any axial turbomachine. The particular considerations
for axial compressor blades are then presented followed by those for axial turbine blades. The emphasis
is on understanding the flow features that constrain the design of turbomachine blades and the basic
prediction of cascade performance. Transonic flow can dramatically modify the characteristics of a
blade row and special attention is given to the effects of compressibility on cascade aerodynamics.

Chapters 4 and 5 cover axial turbines and axial compressors, respectively. In Chapter 4, new mate-
rial has been developed to cover the preliminary design and analysis of single- and multi-stage axial
turbines. The calculations needed to fix the size, the number of stages, the number of aerofoils in each
blade row, and the velocity triangles are covered. The merits of different styles of turbine design are
considered including the implications for mechanical design such as centrifugal stress levels and cool-
ing in high speed and high temperature turbines. Through the use of some relatively simple correlations
the trends in turbine efficiency with the main turbine parameters are presented. In Chapter 5, the ana-
lysis and preliminary design of all types of axial compressors are covered. This includes a new presen-
tation of how measurements of cascade loss and turning can be translated into the performance of a
compressor stage. Both incompressible and compressible cases are covered in the chapter and it is
interesting to see how high speed compressors can achieve a pressure rise through quite a different
flow process to that in a low speed machine. The huge importance of off-design performance is

xi



covered in some detail including how the designer can influence compressor operating range in the
very early design stages. There is also a selection of new examples and problems involving the com-
pressible flow analysis of high speed compressors.

Chapter 6 covers three-dimensional effects in axial turbomachinery. The aim of this chapter is to
give the reader an understanding of spanwise flow variations and to present some of the main flow
features that are not captured within mean-line analysis. It includes a brief introduction to the subject
of computational fluid dynamics, which now plays a large part in turbomachinery design and analysis.
Detailed coverage of computational methods is beyond the scope of this book. However, all the prin-
ciples detailed in this book are equally applicable to numerical and experimental studies of
turbomachines.

Radial turbomachinery remains hugely important for a vast number of applications, such as turbo-
charging for internal combustion engines, oil and gas transportation, and air liquefaction. As jet engine
cores become more compact there is also the possibility of radial machines finding new uses within
aerospace applications. The analysis and design principles for centrifugal compressors and radial
inflow turbines are covered in Chapters 7 and 8. Improvements have been made relative to the fifth
edition including new examples, corrections to the material, and reorganization of some sections.

Renewable energy topics were first added to the fourth edition of this book by way of the Wells
turbine and a new chapter on hydraulic turbines. In the fifth edition a new chapter on wind turbines
was added. Both of these chapters have been retained in this edition as the world remains increasingly
concerned with the very major issues surrounding the use of various forms of energy. There is contin-
uous pressure to obtain more power from renewable energy sources and hydroelectricity and wind
power have a significant role to play. In this edition, hydraulic turbines are covered in Chapter 9,
which includes coverage of the Wells turbine, a new section on tidal power generators, and several
new example problems. Chapter 10 covers the essential fluid mechanics of wind turbines, together
with numerous worked examples at various levels of difficulty. Important aspects concerning the cri-
teria of blade selection and blade manufacture, control methods for regulating power output and rotor
speed, and performance testing are touched upon. Also included are some very brief notes concerning
public and environmental issues, which are becoming increasingly important as they, ultimately, can
affect the development of wind turbines.

To develop the understanding of students as they progress through the book, the expounded the-
ories are illustrated by a selection of worked examples. As well as these examples, each chapter con-
tains problems for solution, some easy, some hard. See what you can make of them!

xii Preface to the Sixth Edition
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CHAPTER

Introduction: Basic Principles 1
Take your choice of those that can best aid your action.

Shakespeare, Coriolanus

1.1 DEFINITION OF A TURBOMACHINE
We classify as turbomachines all those devices in which energy is transferred either to, or from, a con-
tinuously flowing fluid by the dynamic action of one or more moving blade rows. The word turbo or
turbinis is of Latin origin and implies that which spins or whirls around. Essentially, a rotating blade
row, a rotor or an impeller changes the stagnation enthalpy of the fluid moving through it by doing
either positive or negative work, depending upon the effect required of the machine. These enthalpy
changes are intimately linked with the pressure changes occurring simultaneously in the fluid.

Two main categories of turbomachine are identified: firstly, those that absorb power to increase the
fluid pressure or head (ducted and unducted fans, compressors, and pumps); secondly, those that pro-
duce power by expanding fluid to a lower pressure or head (wind, hydraulic, steam, and gas turbines).
Figure 1.1 shows, in a simple diagrammatic form, a selection of the many varieties of turbomachines
encountered in practice. The reason that so many different types of either pump (compressor) or turbine
are in use is because of the almost infinite range of service requirements. Generally speaking, for a given
set of operating requirements one type of pump or turbine is best suited to provide optimum conditions
of operation.

Turbomachines are further categorised according to the nature of the flow path through the passages
of the rotor. When the path of the through-flow is wholly or mainly parallel to the axis of rotation, the
device is termed an axial flow turbomachine [e.g., Figures 1.1(a) and (e)]. When the path of the through-
flow is wholly or mainly in a plane perpendicular to the rotation axis, the device is termed a radial flow
turbomachine [e.g., Figure 1.1(c)]. More detailed sketches of radial flow machines are given in
Figures 7.3, 7.4, 8.2, and 8.3. Mixed flow turbomachines are widely used. The term mixed flow in this
context refers to the direction of the through-flow at the rotor outlet when both radial and axial velocity
components are present in significant amounts. Figure 1.1(b) shows amixed flow pump and Figure 1.1(d)
a mixed flow hydraulic turbine.

One further category should be mentioned. All turbomachines can be classified as either impulse or
reaction machines according to whether pressure changes are absent or present, respectively, in the
flow through the rotor. In an impulse machine all the pressure change takes place in one or more noz-
zles, the fluid being directed onto the rotor. The Pelton wheel, Figure 1.1(f), is an example of an
impulse turbine.

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00001-8
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The main purpose of this book is to examine, through the laws of fluid mechanics and thermo-
dynamics, the means by which the energy transfer is achieved in the chief types of turbomachines,
together with the differing behaviour of individual types in operation. Methods of analysing the flow
processes differ depending upon the geometrical configuration of the machine, whether the fluid can
be regarded as incompressible or not, and whether the machine absorbs or produces work. As far as
possible, a unified treatment is adopted so that machines having similar configurations and function
are considered together.

1.2 COORDINATE SYSTEM
Turbomachines consist of rotating and stationary blades arranged around a common axis, which means
that they tend to have some form of cylindrical shape. It is therefore natural to use a cylindrical polar
coordinate system aligned with the axis of rotation for their description and analysis. This coordinate

(c) Centrifugal compressor or pump

Impeller

Volute

Vaneless diffuser

Outlet diffuser

Flow direction

(a) Single stage axial flow
     compressor or pump

Rotor blades
Outlet vanes

Flow

(e) Kaplan turbine

Draught tube
or diffuser

FlowFlow

Guide vanes

Rotor blades

Outlet vanes
Flow

(b) Mixed flow pump

(d) Francis turbine
         (mixed flow type)

FlowFlow

Runner bladesGuide vanes

Draught tube

(f) Pelton wheel

WheelNozzle

Inlet pipe

Flow

Jet

FIGURE 1.1

Examples of Turbomachines
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system is pictured in Figure 1.2. The three axes are referred to as axial x, radial r, and tangential
(or circumferential) rθ.

In general, the flow in a turbomachine has components of velocity along all three axes, which vary
in all directions. However, to simplify the analysis it is usually assumed that the flow does not vary in
the tangential direction. In this case, the flow moves through the machine on axi symmetric stream
surfaces, as drawn on Figure 1.2(a). The component of velocity along an axi-symmetric stream surface
is called the meridional velocity,

cm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2r

q
. ð1:1Þ

In purely axial-flow machines the radius of the flow path is constant and therefore, referring to
Figure 1.2(c) the radial flow velocity will be zero and cm ¼ cx. Similarly, in purely radial flow

cm

cx

cr

r

x Axis of rotation

Hub

Casing

Blade

Flow stream
surfaces

(a) Meridional or side view
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machines the axial flow velocity will be zero and cm ¼ cr. Examples of both of these types of
machines can be found in Figure 1.1.

The total flow velocity is made up of the meridional and tangential components and can be written

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2r þ c2θ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2m þ c2θ

q
. ð1:2Þ

The swirl, or tangential, angle is the angle between the flow direction and the meridional direction:

α ¼ tan �1ðcθ=cmÞ. ð1:3Þ

Relative Velocities
The analysis of the flow-field within the rotating blades of a turbomachine is performed in a frame of
reference that is stationary relative to the blades. In this frame of reference the flow appears as steady,
whereas in the absolute frame of reference it would be unsteady. This makes any calculations signi-
ficantly more straightforward, and therefore the use of relative velocities and relative flow quantities
is fundamental to the study of turbomachinery.

The relative velocity is simply the absolute velocity minus the local velocity of the blade. The blade
has velocity only in the tangential direction, and therefore the relative components of velocity can be
written as

wθ ¼ cθ �U,wx ¼ cx,wr ¼ cr. ð1:4Þ
The relative flow angle is the angle between the relative flow direction and the meridional direction:

β ¼ tan �1ðwθ=cmÞ. ð1:5Þ
By combining eqns. (1.3), (1.4), and (1.5) a relationship between the relative and absolute flow angles
can be found:

tan β ¼ tan α�U=cm. ð1:6Þ

1.3 THE FUNDAMENTAL LAWS
The remainder of this chapter summarises the basic physical laws of fluid mechanics and thermo-
dynamics, developing them into a form suitable for the study of turbomachines. Following this,
some of the more important and commonly used expressions for the efficiency of compression and
expansion flow processes are given.

The laws discussed are

(i) the continuity of flow equation;
(ii) the first law of thermodynamics and the steady flow energy equation;
(iii) the momentum equation;
(iv) the second law of thermodynamics.

All of these laws are usually covered in first-year university engineering and technology courses, so
only the briefest discussion and analysis is given here. Some textbooks dealing comprehensively
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with these laws are those written by Çengel and Boles (1994); Douglas, Gasiorek, and Swaffield
(1995); Rogers and Mayhew (1992); and Reynolds and Perkins (1977). It is worth remembering
that these laws are completely general; they are independent of the nature of the fluid or whether
the fluid is compressible or incompressible.

1.4 THE EQUATION OF CONTINUITY
Consider the flow of a fluid with density ρ, through the element of area dA, during the time interval dt.
Referring to Figure 1.3, if c is the stream velocity the elementary mass is dm ¼ ρcdtdA cos θ, where θ
is the angle subtended by the normal of the area element to the stream direction. The element of area
perpendicular to the flow direction is dAn ¼ dA cos θ and so dm ¼ ρcdAndt. The elementary rate of
mass flow is therefore

d _m ¼ dm
dt

¼ ρcdAn. ð1:7Þ

Most analyses in this book are limited to one-dimensional steady flows where the velocity and den-
sity are regarded as constant across each section of a duct or passage. If An1 and An2 are the areas
normal to the flow direction at stations 1 and 2 along a passage respectively, then

_m ¼ ρ1c1An1 ¼ ρ2c2An2 ¼ ρcAn, ð1:8Þ
since there is no accumulation of fluid within the control volume.

1.5 THE FIRST LAW OF THERMODYNAMICS
The first law of thermodynamics states that, if a system is taken through a complete cycle during which
heat is supplied and work is done, then I

ðdQ� dWÞ ¼ 0, ð1:9Þ

where ∮ dQ represents the heat supplied to the system during the cycle and ∮ dW the work done by the
system during the cycle. The units of heat and work in eqn. (1.9) are taken to be the same.
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During a change from state 1 to state 2, there is a change in the energy within the system:

E2 �E1 ¼
Z 2

1
ðdQ� dWÞ, ð1:10aÞ

where E ¼U þ 1
2
mc2 þmgz.

For an infinitesimal change of state,
dE ¼ dQ� dW . ð1:10bÞ

The Steady Flow Energy Equation
Many textbooks, e.g., Çengel and Boles (1994), demonstrate how the first law of thermodynamics is
applied to the steady flow of fluid through a control volume so that the steady flow energy equation is
obtained. It is unprofitable to reproduce this proof here and only the final result is quoted. Figure 1.4
shows a control volume representing a turbomachine, through which fluid passes at a steady rate of
mass flow _m, entering at position 1 and leaving at position 2. Energy is transferred from the fluid
to the blades of the turbomachine, positive work being done (via the shaft) at the rate _Wx. In the general
case positive heat transfer takes place at the rate _Q, from the surroundings to the control volume. Thus,
with this sign convention the steady flow energy equation is

_Q� _Wx ¼ _m h2 � h1ð Þ þ 1
2
ðc22 � c21Þ þ g z2 � z1ð Þ

� �
, ð1:11Þ

where h is the specific enthalpy,
1
2
c2, the kinetic energy per unit mass and gz, the potential energy per

unit mass.
For convenience, the specific enthalpy, h, and the kinetic energy,

1
2
c2, are combined and the result

is called the stagnation enthalpy:

h0 ¼ hþ 1
2
c2. ð1:12Þ

Apart from hydraulic machines, the contribution of the g(z2 � z1) term in eqn. (1.11) is small and can
usually ignored. In this case, eqn. (1.11) can be written as

_Q� _Wx ¼ _mðh02 � h01Þ. ð1:13Þ
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FIGURE 1.4
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The stagnation enthalpy is therefore constant in any flow process that does not involve a work transfer
or a heat transfer. Most turbomachinery flow processes are adiabatic (or very nearly so) and it is per-
missible to write _Q ¼ 0. For work producing machines (turbines) _Wx > 0, so that

_Wx ¼ _Wt ¼ _mðh01� h02Þ. ð1:14Þ
For work absorbing machines (compressors) _Wx < 0, so that it is more convenient to write

_Wc ¼ � _Wx ¼ _mðh02 � h01Þ. ð1:15Þ

1.6 THE MOMENTUM EQUATION
One of the most fundamental and valuable principles in mechanics is Newton’s second law of motion.
The momentum equation relates the sum of the external forces acting on a fluid element to its accelera-
tion, or to the rate of change of momentum in the direction of the resultant external force. In the study
of turbomachines many applications of the momentum equation can be found, e.g., the force exerted
upon a blade in a compressor or turbine cascade caused by the deflection or acceleration of fluid
passing the blades.

Considering a system of mass m, the sum of all the body and surface forces acting on m along some
arbitrary direction x is equal to the time rate of change of the total x-momentum of the system, i.e.,X

Fx ¼ d
dt
ðmcxÞ. ð1:16aÞ

For a control volume where fluid enters steadily at a uniform velocity cx1 and leaves steadily with a
uniform velocity cx2, then X

Fx ¼ _mðcx2 � cx1Þ. ð1:16bÞ
Equation (1.16b) is the one-dimensional form of the steady flow momentum equation.

Moment of Momentum
In dynamics useful information can be obtained by employing Newton’s second law in the form where
it applies to the moments of forces. This form is of central importance in the analysis of the energy
transfer process in turbomachines.

For a system of mass m, the vector sum of the moments of all external forces acting on the system
about some arbitrary axis A–A fixed in space is equal to the time rate of change of angular momentum
of the system about that axis, i.e.,

τΑ ¼ m
d
dt
ðrcθÞ, ð1:17aÞ

where r is distance of the mass centre from the axis of rotation measured along the normal to the axis
and cθ the velocity component mutually perpendicular to both the axis and radius vector r.

For a control volume the law of moment of momentum can be obtained. Figure 1.5 shows the con-
trol volume enclosing the rotor of a generalised turbomachine. Swirling fluid enters the control volume
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at radius r1 with tangential velocity cθ1 and leaves at radius r2 with tangential velocity cθ2. For one-
dimensional steady flow,

τA ¼ _mðr2cθ2 � r1cθ1Þ, ð1:17bÞ
which states that the sum of the moments of the external forces acting on fluid temporarily occupying the
control volume is equal to the net time rate of efflux of angular momentum from the control volume.

The Euler Work Equation
For a pump or compressor rotor running at angular velocity Ω, the rate at which the rotor does work on
the fluid is

τAΩ ¼ _mðU2cθ2 �U1cθ1Þ, ð1:18aÞ
where the blade speed U ¼ Ωr.

Thus, the work done on the fluid per unit mass or specific work is

ΔWc ¼
_Wc

_m
¼ τAΩ

_m
¼ U2cθ2 �U1cθ1 > 0. ð1:18bÞ

This equation is referred to as Euler’s pump equation.
For a turbine the fluid does work on the rotor and the sign for work is then reversed. Thus, the

specific work is

ΔWt ¼
_Wt

_m
¼ U1cθ1 �U2cθ2 > 0. ð1:18cÞ

Equation (1.18c) is referred to as Euler’s turbine equation.
Note that, for any adiabatic turbomachine (turbine or compressor), applying the steady flow energy

equation, eqn. (1.13), gives

ΔWx ¼ ðh01 � h02Þ ¼ U1cθ1 �U2cθ2. ð1:19aÞ
Alternatively, this can be written as

Δh0 ¼ ΔðUcθÞ. ð1:19bÞ

�A, V

Flow direction

A A

r2r1

c�2

c�1

FIGURE 1.5

Control Volume for a Generalised Turbomachine

8 CHAPTER 1 Introduction: Basic Principles



Equations (1.19a) and (1.19b) are the general forms of the Euler work equation. By considering the
assumptions used in its derivation, this equation can be seen to be valid for adiabatic flow for any
streamline through the blade rows of a turbomachine. It is applicable to both viscous and inviscid
flow, since the torque provided by the fluid on the blades can be exerted by pressure forces or frictional
forces. It is strictly valid only for steady flow but it can also be applied to time-averaged unsteady flow
provided the averaging is done over a long enough time period. In all cases, all of the torque from the
fluid must be transferred to the blades. Friction on the hub and casing of a turbomachine can cause
local changes in angular momentum that are not accounted for in the Euler work equation.

Note that for any stationary blade row, U ¼ 0 and therefore h0 ¼ constant. This is to be expected
since a stationary blade cannot transfer any work to or from the fluid.

Rothalpy and Relative Velocities
The Euler work equation, eqn. (1.19), can be rewritten as

I ¼ h0 �Ucθ, ð1:20aÞ
where I is a constant along the streamlines through a turbomachine. The function I has acquired the
widely used name rothalpy, a contraction of rotational stagnation enthalpy, and is a fluid mechanical
property of some importance in the study of flow within rotating systems. The rothalpy can also be
written in terms of the static enthalpy as

I ¼ hþ 1
2
c2 �Ucθ. ð1:20bÞ

The Euler work equation can also be written in terms of relative quantities for a rotating frame of reference.
The relative tangential velocity, as given in eqn. (1.4), can be substituted in eqn. (1.20b) to produce

I ¼ hþ 1
2
ðw2 þ U2 þ 2UwθÞ�Uðwθ þ UÞ ¼ hþ 1

2
w2 � 1

2
U2. ð1:21aÞ

Defining a relative stagnation enthalpy as h0,rel ¼ h þ 1
2
w2, eqn. (1.21a) can be simplified to

I ¼ h0,rel � 1
2
U2. ð1:21bÞ

This final form of the Euler work equation shows that, for rotating blade rows, the relative stagnation
enthalpy is constant through the blades provided the blade speed is constant. In other words, h0,rel ¼
constant, if the radius of a streamline passing through the blades stays the same. This result is important
for analysing turbomachinery flows in the relative frame of reference.

1.7 THE SECOND LAW OF THERMODYNAMICS—ENTROPY
The second law of thermodynamics, developed rigorously in many modern thermodynamic textbooks,
e.g., Çengel and Boles (1994), Reynolds and Perkins (1977), and Rogers and Mayhew (1992), enables
the concept of entropy to be introduced and ideal thermodynamic processes to be defined.
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An important and useful corollary of the second law of thermodynamics, known as the inequality of
Clausius, states that, for a system passing through a cycle involving heat exchanges,I

dQ
T

≤ 0, ð1:22aÞ

where dQ is an element of heat transferred to the system at an absolute temperature T. If all the pro-
cesses in the cycle are reversible, then dQ ¼ dQR, and the equality in eqn. (1.22a) holds true, i.e.,I

dQR

T
¼ 0: ð1:22bÞ

The property called entropy, for a finite change of state, is then defined as

S2 � S1 ¼
Z 2

1

dQR

T
. ð1:23aÞ

For an incremental change of state

dS ¼ mds ¼ dQR

T
, ð1:23bÞ

where m is the mass of the system.
With steady one-dimensional flow through a control volume in which the fluid experiences a

change of state from condition 1 at entry to 2 at exit,Z 2

1

d _Q
T

≤ _mðs2 � s1Þ. ð1:24aÞ

Alternatively, this can be written in terms of an entropy production due to irreversibility, ΔSirrev:

_mðs2 � s1Þ ¼
Z 2

1

d _Q
T

þ ΔSirrev. ð1:24bÞ

If the process is adiabatic, d _Q ¼ 0, then

s2 ≥ s1. ð1:25Þ
If the process is reversible as well, then

s2 ¼ s1. ð1:26Þ
Thus, for a flow undergoing a process that is both adiabatic and reversible, the entropy will remain
unchanged (this type of process is referred to as isentropic). Since turbomachinery is usually adiabatic,
or close to adiabatic, an isentropic compression or expansion represents the best possible process that
can be achieved. To maximize the efficiency of a turbomachine, the irreversible entropy production
ΔSirrev must be minimized, and this is a primary objective of any design.

Several important expressions can be obtained using the preceding definition of entropy. For a system
of mass m undergoing a reversible process dQ¼ dQR¼mTds and dW¼ dWR¼mpdv. In the absence of
motion, gravity, and other effects the first law of thermodynamics, eqn. (1.10b) becomes

Tds ¼ duþ pdv. ð1:27Þ
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With h¼ uþ pv, then dh¼ duþ pdvþ vdp, and eqn. (1.27) then gives

Tds ¼ dh� vdp. ð1:28Þ
Equations (1.27) and (1.28) are extremely useful forms of the second law of thermodynamics

because the equations are written only in terms of properties of the system (there are no terms involving
Q or W ). These equations can therefore be applied to a system undergoing any process.

Entropy is a particularly useful property for the analysis of turbomachinery. Any creation of
entropy in the flow path of a machine can be equated to a certain amount of “lost work” and thus a
loss in efficiency. The value of entropy is the same in both the absolute and relative frames of reference
(see Figure 1.7 later) and this means it can be used to track the sources of inefficiency through all the
rotating and stationary parts of a machine. The application of entropy to account for lost performance is
very powerful and will be demonstrated in later sections.

1.8 BERNOULLI’S EQUATION
Consider the steady flow energy equation, eqn. (1.11). For adiabatic flow, with no work transfer,

ðh2 � h1Þ þ 1
2
ðc22 � c21Þ þ g z2 � z1ð Þ ¼ 0. ð1:29Þ

If this is applied to a control volume whose thickness is infinitesimal in the stream direction
(Figure 1.6), the following differential form is derived:

dhþ cdcþ gdz ¼ 0: ð1:30Þ
If there are no shear forces acting on the flow (no mixing or friction), then the flow will be isentropic
and, from eqn. (1.28), dh¼ vdp¼ dp/ρ, giving

1
ρ
dpþ cdcþ gdz ¼ 0: ð1:31aÞ
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Equation (1.31) is often referred to as the one-dimensional form of Euler’s equation of motion. Inte-
grating this equation in the stream direction we obtainZ 2

1

1
ρ
dpþ 1

2
ðc22 � c21Þ þ gðz2 � z1Þ ¼ 0, ð1:31bÞ

which is Bernoulli’s equation. For an incompressible fluid, ρ is constant and eqn. (1.31b) becomes

1
ρ

p02 � p01ð Þ þ g z2 � z1ð Þ ¼ 0, ð1:31cÞ

where the stagnation pressure for an incompressible fluid is p0 ¼ pþ 1
2
ρc2.

When dealing with hydraulic turbomachines, the term head, H, occurs frequently and describes the
quantity z þ p0/( ρg). Thus, eqn. (1.31c) becomes

H2 �H1 ¼ 0. ð1:31dÞ
If the fluid is a gas or vapour, the change in gravitational potential is generally negligible and eqn.

(1.31b) is then Z 2

1

1
ρ
dpþ 1

2
ðc22 � c21Þ ¼ 0. ð1:31eÞ

Now, if the gas or vapour is subject to only small pressure changes the fluid density is sensibly constant
and integration of eqn. (1.31e) gives

p02 ¼ p01 ¼ p0, ð1:31fÞ
i.e., the stagnation pressure is constant (it is shown later that this is also true for a compressible isen-
tropic process).

1.9 COMPRESSIBLE FLOW RELATIONS
The Mach number of a flow is defined as the velocity divided by the local speed of sound. For a perfect
gas, such as air, the Mach number can be written as

M ¼ c

a
¼ cffiffiffiffiffiffiffiffi

γRT
p . ð1:32Þ

Whenever the Mach number in a flow exceeds about 0.3, the flow becomes compressible, and the
fluid density can no longer be considered as constant. High power turbomachines require high flow
rates and high blade speeds and this inevitably leads to compressible flow. The static and stagnation
quantities in the flow can be related using functions of the local Mach number and these are derived later.

Starting with the definition of stagnation enthalpy, h0 ¼ h þ 1
2
c2, this can be rewritten for a perfect

gas as

CpT0 ¼ CpT þ c2

2
¼ CpT þM2γRT

2
. ð1:33aÞ
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Given that γR ¼ (γ � 1)CP, eqn. (1.33a) can be simplified to

T0
T

¼ 1þ γ� 1
2

M2. ð1:33bÞ

The stagnation pressure in a flow is the static pressure that is measured if the flow is brought isen-
tropically to rest. From eqn. (1.28), for an isentropic process dh ¼ dp/ρ. If this is combined with the
equation of state for a perfect gas, p ¼ ρRT, the following equation is obtained:

dp
p

¼ Cp

R

dT
T

¼ dT
T

γ
γ� 1

ð1:34Þ

This can be integrated between the static and stagnation conditions to give the following compressible
flow relation between the stagnation and static pressure:

p0
p
¼ T0

T

� �γ=ðγ�1Þ
¼ 1þ γ� 1

2
M2

� �γ=ðγ�1Þ
. ð1:35Þ

Equation (1.34) can also be integrated along a streamline between any two arbitrary points 1 and 2
within an isentropic flow. In this case, the stagnation temperatures and pressures are related:

p02
p01

¼ T02
T01

� �γ=ðγ�1Þ
. ð1:36Þ

If there is no heat or work transfer to the flow, T0 ¼ constant. Hence, eqn. (1.36) shows that, in isen-
tropic flow with no work transfer, p02 ¼ p01 ¼ constant, which was shown to be the case for incom-
pressible flow in eqn. (1.31f).

Combining the equation of state, p ¼ ρRT with eqns. (1.33b) and (1.35) the corresponding relation-
ship for the stagnation density is obtained:

ρ0
ρ
¼ 1þ γ� 1

2
M2

� �1=ðγ�1Þ
. ð1:37Þ

Arguably the most important compressible flow relationship for turbomachinery is the one for
non-dimensional mass flow rate, sometimes referred to as capacity. It is obtained by combining
eqns. (1.33b), (1.35), and (1.37) with continuity, eqn. (1.8):

_m
ffiffiffiffiffiffiffiffiffiffiffi
CPT0

p
Anp0

¼ γffiffiffiffiffiffiffiffiffiffi
γ� 1

p M 1þ γ� 1
2

M2

� �� 1
2

γþ1
γ�1

� �
. ð1:38Þ

This result is important since it can be used to relate the flow properties at different points within a
compressible flow turbomachine. The application of eqn. (1.38) is demonstrated in Chapter 3.

Note that the compressible flow relations given previously can be applied in the relative frame of
reference for flow within rotating blade rows. In this case relative stagnation properties and relative
Mach numbers are used:

p0,rel
p

,
T0,rel
T

,
ρ0,rel
ρ

,
_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT0,rel

p
Ap0,rel

¼ f ðMrelÞ. ð1:39Þ
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Figure 1.7 shows the relationship between stagnation and static conditions on a temperature–entropy
diagram, in which the temperature differences have been exaggerated for clarity. This shows the relative
stagnation properties as well as the absolute properties for a single point in a flow. Note that all of the
conditions have the same entropy because the stagnation states are defined using an isentropic process.
The pressures and temperatures are related using eqn. (1.35).

Variation of Gas Properties with Temperature
The thermodynamic properties of a gas, Cp and γ, are dependent upon its temperature level, and some
account must be taken of this effect. To illustrate this dependency the variation in the values of Cp and
γ with the temperature for air are shown in Figure 1.8. In the calculation of expansion or compression
processes in turbomachines the normal practice is to use weighted mean values for Cp and γ according
to the mean temperature of the process. Accordingly, in all problems in this book values have been
selected for Cp and γ appropriate to the gas and the temperature range.
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1.10 DEFINITIONS OF EFFICIENCY
A large number of efficiency definitions are included in the literature of turbomachines and most
workers in this field would agree there are too many. In this book only those considered to be important
and useful are included.

Efficiency of Turbines
Turbines are designed to convert the available energy in a flowing fluid into useful mechanical work
delivered at the coupling of the output shaft. The efficiency of this process, the overall efficiency η0, is
a performance factor of considerable interest to both designer and user of the turbine. Thus,

η0 ¼
mechanical energy available at coupling of output shaft in unit time

maximum energy difference possible for the fluid in unit time
.

Mechanical energy losses occur between the turbine rotor and the output shaft coupling as a result
of the work done against friction at the bearings, glands, etc. The magnitude of this loss as a fraction of
the total energy transferred to the rotor is difficult to estimate as it varies with the size and individual
design of turbomachine. For small machines (several kilowatts) it may amount to 5% or more, but for
medium and large machines this loss ratio may become as little as 1%. A detailed consideration of the
mechanical losses in turbomachines is beyond the scope of this book and is not pursued further.

The isentropic efficiency ηt or hydraulic efficiency ηh for a turbine is, in broad terms,

ηt ðor ηhÞ ¼
mechanical energy supplied to the rotor in unit time

maximum energy difference possible for the fluid in unit time
.

Comparing these definitions it is easily deduced that the mechanical efficiency ηm, which is simply the
ratio of shaft power to rotor power, is

ηm ¼ η0=ηt ðor η0=ηhÞ. ð1:40Þ
The preceding isentropic efficiency definition can be concisely expressed in terms of the work done by
the fluid passing through the turbine:

ηt ðor ηhÞ ¼
actual work

ideal ðmaximumÞ work ¼ ΔWx

ΔWmax
. ð1:41Þ

The actual work is unambiguous and straightforward to determine from the steady flow energy equa-
tion, eqn. (1.11). For an adiabatic turbine, using the definition of stagnation enthalpy,

ΔWx ¼ _Wx= _m ¼ ðh01 � h02Þ þ gðz1 � z2Þ.
The ideal work is slightly more complicated as it depends on how the ideal process is defined. The
process that gives maximum work will always be an isentropic expansion, but the question is one
of how to define the exit state of the ideal process relative to the actual process. In the following para-
graphs the different definitions are discussed in terms of to what type of turbine they are applied.
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Steam and Gas Turbines
Figure 1.9(a) shows a Mollier diagram representing the expansion process through an adiabatic turbine.
Line 1–2 represents the actual expansion and line 1–2s the ideal or reversible expansion. The fluid
velocities at entry to and exit from a turbine may be quite high and the corresponding kinetic energies
significant. On the other hand, for a compressible fluid the potential energy terms are usually negligible.
Hence, the actual turbine rotor specific work is

ΔWx ¼ _Wx= _m ¼ h01 � h02 ¼ ðh1 � h2Þ þ 1
2
ðc21 � c22Þ.

There are two main ways of expressing the isentropic efficiency, the choice of definition depending
largely upon whether the exit kinetic energy is usefully employed or is wasted. If the exhaust kinetic
energy is useful, then the ideal expansion is to the same stagnation (or total) pressure as the actual
process. The ideal work output is therefore that obtained between state points 01 and 02s,

ΔWmax ¼ _Wmax= _m ¼ h01 � h02s ¼ ðh1 � h2sÞ þ 1
2
ðc21 � c22sÞ.

The relevant adiabatic efficiency, η, is called the total-to-total efficiency and it is given by

ηtt ¼ ΔWx=ΔWmax ¼ ðh01 � h02Þ=ðh01 � h02sÞ. ð1:42aÞ

If the difference between the inlet and outlet kinetic energies is small, i.e.,
1
2
c21 @

1
2
c22, then

ηtt ¼ ðh1 � h2Þ=ðh1 � h2sÞ. ð1:42bÞ
An example where the exhaust kinetic energy is not wasted is from the last stage of an aircraft gas
turbine where it contributes to the jet propulsive thrust. Likewise, the exit kinetic energy from one
stage of a multistage turbine where it can be used in the following stage provides another example.
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Enthalpy–Entropy Diagrams for the Flow Through an Adiabatic Turbine and an Adiabatic Compressor
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If, instead, the exhaust kinetic energy cannot be usefully employed and is entirely wasted, the ideal
expansion is to the same static pressure as the actual process with zero exit kinetic energy. The ideal
work output in this case is that obtained between state points 01 and 2s:

ΔWmax ¼ _Wmax= _m ¼ h01 � h2s ¼ ðh1 � h2sÞ þ 1
2
c21.

The relevant adiabatic efficiency is called the total-to-static efficiency ηts and is given by

ηts ¼ ΔWx=ΔWmax ¼ ðh01 � h02Þ=ðh01 � h2sÞ. ð1:43aÞ
If the difference between inlet and outlet kinetic energies is small, eqn. (1.43a) becomes

ηts ¼ h1 � h2ð Þ
.

h1 � h2s þ 1
2
c21

� �
. ð1:43bÞ

A situation where the outlet kinetic energy is wasted is a turbine exhausting directly to the surround-
ings rather than through a diffuser. For example, auxiliary turbines used in rockets often have no
exhaust diffusers because the disadvantages of increased mass and space utilisation are greater than
the extra propellant required as a result of reduced turbine efficiency.

By comparing eqns. (1.42) and (1.43) it is clear that the total-to-static efficiency will always be
lower than the total-to-total efficiency. The total-to-total efficiency relates to the internal losses
(entropy creation) within the turbine, whereas the total-to-static efficiency relates to the internal losses
plus the wasted kinetic energy.

Hydraulic Turbines
The turbine hydraulic efficiency is a form of the total-to-total efficiency expressed previously. The
steady flow energy equation (eqn. 1.11) can be written in differential form for an adiabatic turbine as

d _Wx ¼ _m dhþ 1
2
dðc2Þ þ gdz

� �
.

For an isentropic process, Tds¼ 0¼ dh� dp/ρ. The maximumwork output for an expansion to the same
exit static pressure, kinetic energy, and height as the actual process is therefore

_Wmax ¼ _m

Z 2

1

1
ρ
dpþ 1

2
ðc21 � c22Þ þ gðz1 � z2Þ

� �
.

For an incompressible fluid, the maximum work output from a hydraulic turbine (ignoring frictional
losses) can be written

_Wmax ¼ _m
1
ρ
ðp1 � p2Þ þ 1

2
ðc21 � c22Þ þ gðz1 � z2Þ

� �
¼ _mgðH1 �H2Þ,

where gH ¼ p/ρþ 1
2
c2þ gz and _m ¼ ρQ.

The turbine hydraulic efficiency, ηh, is the work supplied by the rotor divided by the hydrodynamic
energy difference of the fluid, i.e.,

ηh ¼
_Wx

_Wmax
¼ ΔWx

g H1 �H2½ � . ð1:44Þ
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Efficiency of Compressors and Pumps
The isentropic efficiency, ηc, of a compressor or the hydraulic efficiency of a pump, ηh, is broadly
defined as

ηc ðor ηhÞ ¼
useful ðhydrodynamicÞ energy input to fluid in unit time

power input to rotor

The power input to the rotor (or impeller) is always less than the power supplied at the coupling
because of external energy losses in the bearings, glands, etc. Thus, the overall efficiency of the com-
pressor or pump is

ηo ¼
useful ðhydrodynamicÞ energy input to fluid in unit time

power input to coupling of shaft
.

Hence, the mechanical efficiency is

ηm ¼ ηo=ηc ðor ηo=ηhÞ. ð1:45Þ
For a complete adiabatic compression process going from state 1 to state 2, the specific work input is

ΔWc ¼ ðh02 � h01Þ þ gðz2 � z1Þ.
Figure 1.9(b) shows a Mollier diagram on which the actual compression process is represented by the
state change 1–2 and the corresponding ideal process by 1–2s. For an adiabatic compressor in which
potential energy changes are negligible, the most meaningful efficiency is the total-to-total efficiency,
which can be written as

ηc ¼
ideal ðminimumÞwork input

actual work input
¼ h02s � h01

h02 � h01
. ð1:46aÞ

If the difference between inlet and outlet kinetic energies is small,
1
2
c21 @

1
2
c22 then

ηc ¼
h2s � h1
h2 � h1

. ð1:46bÞ

For incompressible flow, the minimum work input is given by

ΔWmin ¼ _Wmin= _m¼ ð p2 � p1Þ=ρþ 1
2
ðc22 � c21Þ þ gðz2 � z1Þ

� �
¼ g½H2 �H1�.

For a pump the hydraulic efficiency is therefore defined as

ηh ¼
_Wmin

_Wc
¼ g½H2 �H1�

ΔWc
. ð1:47Þ

1.11 SMALL STAGE OR POLYTROPIC EFFICIENCY
The isentropic efficiency described in the preceding section, although fundamentally valid, can be mis-
leading if used for comparing the efficiencies of turbomachines of differing pressure ratios. Now, any
turbomachine may be regarded as being composed of a large number of very small stages, irrespective
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of the actual number of stages in the machine. If each small stage has the same efficiency, then the
isentropic efficiency of the whole machine will be different from the small stage efficiency, the differ-
ence depending upon the pressure ratio of the machine. This perhaps rather surprising result is a mani-
festation of a simple thermodynamic effect concealed in the expression for isentropic efficiency and is
made apparent in the following argument.

Compression Process
Figure 1.10 shows an enthalpy–entropy diagram on which adiabatic compression between pressures p1
and p2 is represented by the change of state between points 1 and 2. The corresponding reversible pro-
cess is represented by the isentropic line 1 to 2s. It is assumed that the compression process may be
divided into a large number of small stages of equal efficiency ηp. For each small stage the actual
work input is δW and the corresponding ideal work in the isentropic process is δWmin. With the nota-
tion of Figure 1.10,

ηp ¼
δWmin

δW
¼ hxs � h1

hx � h1
¼ hys � hx

hy � hx
¼ � � �

Since each small stage has the same efficiency, then ηp¼ (ΣδWmin /ΣδW ) is also true.
From the relation Tds ¼ dh – vdp, for a constant pressure process, (∂h/∂s)p1 ¼ T. This means that

the higher the fluid temperature, the greater is the slope of the constant pressure lines on the Mollier
diagram. For a gas where h is a function of T, constant pressure lines diverge and the slope of the line
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FIGURE 1.10

Compression Process by Small Stages

1.11 Small Stage or Polytropic Efficiency 19



p2 is greater than the slope of line p1 at the same value of entropy. At equal values of T, constant
pressure lines are of equal slope as indicated in Figure 1.10. For the special case of a perfect gas
(where Cp is constant), Cp(dT/ds) ¼ T for a constant pressure process. Integrating this expression
results in the equation for a constant pressure line, s ¼ Cp logT þ constant.

Returning now to the more general case, since

ΣdW ¼ fðhx � h1Þ þ ðhy � hxÞ þ � � �g ¼ ðh2 � h1Þ,
then

ηp ¼
	ðhxs � h1Þ þ ðhys � hxÞ þ � � �
=ðh2 � h1Þ.

The adiabatic efficiency of the whole compression process is

ηc ¼ ðh2s � h1Þ=ðh2 � h1Þ.
Due to the divergence of the constant pressure lines

fðhxs � h1Þ þ ðhys � hxÞ þ � � �g> ðh2s � h1Þ,
i.e.,

ΣδWmin >Wmin.

Therefore,

ηp > ηc.

Thus, for a compression process the isentropic efficiency of the machine is less than the small stage
efficiency, the difference being dependent upon the divergence of the constant pressure lines. Although
the foregoing discussion has been in terms of static states it also applies to stagnation states since these
are related to the static states via isentropic processes.

Small Stage Efficiency for a Perfect Gas
An explicit relation can be readily derived for a perfect gas (Cp is constant) between small stage effi-
ciency, the overall isentropic efficiency and the pressure ratio. The analysis is for the limiting case of
an infinitesimal compressor stage in which the incremental change in pressure is dp as indicated in
Figure 1.11. For the actual process the incremental enthalpy rise is dh and the corresponding ideal
enthalpy rise is dhis.

The polytropic efficiency for the small stage is

ηp ¼
dhis
dh

¼ vdp
CpdT

, ð1:48Þ

since for an isentropic process Tds ¼ 0 ¼ dhis � vdp. Substituting v ¼ RT/p into eqn. (1.48) and using
Cp ¼ γR/(γ� 1) gives

dT
T

¼ ðγ� 1Þ
γηp

dp
p
. ð1:49Þ
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Integrating eqn. (1.49) across the whole compressor and taking equal efficiency for each infinitesimal
stage gives

T2
T1

¼ p2
p1

� �ðγ�1Þ=ηpγ
. ð1:50Þ

Now the isentropic efficiency for the whole compression process is

ηc ¼ ðT2s � T1Þ=ðT2 � T1Þ ð1:51Þ

if it is assumed that the velocities at inlet and outlet are equal.
For the ideal compression process put ηp¼ 1 in eqn. (1.50) and so obtain

T2s
T1

¼ p2
p1

� �ðγ�1Þ=γ
, ð1:52Þ

which is equivalent to eqn. (1.36). Substituting eqns. (1.50) and (1.52) into eqn. (1.51) results in the
expression

ηc ¼
p2
p1

� �ðγ�1Þ=γ
� 1

" #
p2
p1

� �ðγ�1Þ=ηpγ
� 1

" #
.

,
ð1:53Þ

Values of “overall” isentropic efficiency have been calculated using eqn. (1.53) for a range of pressure
ratio and different values of ηp; these are plotted in Figure 1.12. This figure amplifies the observation
made earlier that the isentropic efficiency of a finite compression process is less than the efficiency of
the small stages. Comparison of the isentropic efficiency of two machines of different pressure ratios is
not a valid procedure since, for equal polytropic efficiency, the compressor with the higher pressure
ratio is penalised by the hidden thermodynamic effect.
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p1dp
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FIGURE 1.11

Incremental Change of State in a Compression Process
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Example 1.1
An axial flow air compressor is designed to provide an overall total-to-total pressure ratio of 8 to 1. At inlet and
outlet the stagnation temperatures are 300 K and 586.4 K, respectively.

Determine the overall total-to-total efficiency and the polytropic efficiency for the compressor. Assume that γ
for air is 1.4.

Solution
From eqn. (1.46), substituting h¼CpT, the efficiency can be written as

ηC ¼ T02s � T01
T02 � T01

¼
p02
p01

� �ðγ�1Þ=γ
� 1

T02=T01 � 1
¼ 81=3.5 � 1

586� 4=300� 1
¼ 0.85.

From eqn. (1.50), taking logs of both sides and rearranging, we get

ηp¼
γ� 1
γ

lnðp02=p01Þ
lnðT02=T01Þ ¼

1
3:5

� ln 8
ln 1:9547

¼ 0:8865:

Turbine Polytropic Efficiency
A similar analysis to the compression process can be applied to a perfect gas expanding through an adiabatic
turbine. For the turbine the appropriate expressions for an expansion, from a state 1 to a state 2, are
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Relationship Between Isentropic (Overall) Efficiency, Pressure Ratio, and Small Stage (Polytropic) Efficiency for a
Compressor (γ = 1.4)
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T2
T1

¼ p2
p1

� �ηpðγ�1Þ=γ
, ð1:54Þ

ηt ¼ 1� p2
p1

� �ηpðγ�1Þ=γ" #
1� p2

p1

� �ðγ�1Þ=γ" #
.

,
ð1:55Þ

The derivation of these expressions is left as an exercise for the student. “Overall” isentropic effi-
ciencies have been calculated for a range of pressure ratios and polytropic efficiencies, and these are
shown in Figure 1.13. The most notable feature of these results is that, in contrast with a compression
process, for an expansion, isentropic efficiency exceeds small stage efficiency.

Reheat Factor
The foregoing relations cannot be applied to steam turbines as vapours do not obey the perfect gas
laws. It is customary in steam turbine practice to use a reheat factor RH as a measure of the inefficiency
of the complete expansion. Referring to Figure 1.14, the expansion process through an adiabatic tur-
bine from state 1 to state 2 is shown on a Mollier diagram, split into a number of small stages. The
reheat factor is defined as

RH ¼ 	ðh1 � hxsÞ þ ðhx � hysÞ þ � � �
=ðh1 � h2sÞ ¼ ðΣΔhisÞ=ðh1 � h2sÞ.
Due to the gradual divergence of the constant pressure lines on a Mollier chart, RH is always greater
than unity. The actual value of RH for a large number of stages will depend upon the position of the
expansion line on the Mollier chart and the overall pressure ratio of the expansion. In normal steam
turbine practice the value of RH is usually between 1.03 and 1.08.
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Turbine Isentropic Efficiency against Pressure Ratio for Various Polytropic Efficiencies (γ = 1.4)
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Now since the isentropic efficiency of the turbine is

ηt ¼
h1 � h2
h1 � h2s

¼ h1 � h2
ΣΔhis

� ΣΔhis
h1 � h2s

,

then

ηt ¼ ηpRH , ð1:56Þ
which establishes the connection between polytropic efficiency, reheat factor and turbine isentropic
efficiency.

1.12 THE INHERENT UNSTEADINESS OF THE FLOW WITHIN
TURBOMACHINES

It is a less well-known fact often ignored by designers of turbomachinery that turbomachines can only
work the way they do because of flow unsteadiness. This subject was discussed by Dean (1959),
Horlock and Daneshyar (1970), and Greitzer (1986). Here, only a brief introduction to an extensive
subject is given.
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FIGURE 1.14

Mollier Diagram Showing Expansion Process Through a Turbine Split up into a Number of Small Stages
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In the absence of viscosity, the equation for the stagnation enthalpy change of a fluid particle
moving through a turbomachine is

Dh0
Dt

¼ 1
ρ
∂p
∂t

, ð1:57Þ

where D/Dt is the rate of change following the fluid particle. Eqn. (1.57) shows us that any change in
stagnation enthalpy of the fluid is a result of unsteady variations in static pressure. In fact, without
unsteadiness, no change in stagnation enthalpy is possible and thus no work can be done by the
fluid. This is the so-called “Unsteadiness Paradox.” Steady approaches can be used to determine
the work transfer in a turbomachine, yet the underlying mechanism is fundamentally unsteady.

A physical situation considered by Greitzer is the axial compressor rotor as depicted in Figure 1.15a.
The pressure field associated with the blades is such that the pressure increases from the suction surface
(S) to the pressure surface (P). This pressure field moves with the blades and is therefore steady in the
relative frame of reference. However, for an observer situated at the point* (in the absolute frame of
reference), a pressure that varies with time would be recorded, as shown in Figure 1.15b. This unsteady
pressure variation is directly related to the blade pressure field via the rotational speed of the blades,

∂p
∂t

¼ Ω
∂p
∂θ

¼ U
∂p
r∂θ

. ð1:58Þ

Thus, the fluid particles passing through the rotor experience a positive pressure increase with time
(i.e., ∂p/∂t > 0) and their stagnation enthalpy is increased.
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Measuring the Unsteady Pressure Field of an Axial Compressor Rotor: (a) Pressure Measured at Point* on the
Casing, (b) Fluctuating Pressure Measured at Point*
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PROBLEMS

1. For the adiabatic expansion of a perfect gas through a turbine, show that the overall efficiency ηt
and small stage efficiency ηp are related by

ηt ¼ ð1� εηpÞ=ð1� εÞ,
where ε ¼ r(1–γ)/γ, and r is the expansion pressure ratio, γ is the ratio of specific heats. An axial
flow turbine has a small stage efficiency of 86%, an overall pressure ratio of 4.5 to 1 and a mean
value of γ equal to 1.333. Calculate the overall turbine efficiency.

2. Air is expanded in a multi stage axial flow turbine, the pressure drop across each stage being very
small. Assuming that air behaves as a perfect gas with ratio of specific heats γ, derive pressure–
temperature relationships for the following processes:

(i) reversible adiabatic expansion;
(ii) irreversible adiabatic expansion, with small stage efficiency ηp;
(iii) reversible expansion in which the heat loss in each stage is a constant fraction k of the

enthalpy drop in that stage;
(iv) reversible expansion in which the heat loss is proportional to the absolute temperature T.

Sketch the first three processes on a T, s diagram. If the entry temperature is 1100 K and the
pressure ratio across the turbine is 6 to 1, calculate the exhaust temperatures in each of the
first three cases. Assume that γ is 1.333, that ηp¼ 0.85, and that k¼ 0.1.

3. A multistage high-pressure steam turbine is supplied with steam at a stagnation pressure of
7 MPa and a stagnation temperature of 500°C. The corresponding specific enthalpy is
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3410 kJ/kg. The steam exhausts from the turbine at a stagnation pressure of 0.7 MPa, the steam
having been in a superheated condition throughout the expansion. It can be assumed that the
steam behaves like a perfect gas over the range of the expansion and that γ ¼ 1.3. Given that
the turbine flow process has a small-stage efficiency of 0.82, determine

(i) the temperature and specific volume at the end of the expansion,
(ii) the reheat factor.

The specific volume of superheated steam is represented by pv¼ 0.231(h¼ 1943), where p is in
kPa, v is in m3/kg, and h is in kJ/kg.

4. A 20 MW back-pressure turbine receives steam at 4 MPa and 300°C, exhausting from the last
stage at 0.35 MPa. The stage efficiency is 0.85, reheat factor 1.04, and external losses 2% of the
actual isentropic enthalpy drop. Determine the rate of steam flow. At the exit from the first stage
nozzles, the steam velocity is 244 m/s, specific volume 68.6 dm3/kg, mean diameter 762 mm,
and steam exit angle 76° measured from the axial direction. Determine the nozzle exit height
of this stage.

5. Steam is supplied to the first stage of a five stage pressure-compounded steam turbine at a stag-
nation pressure of 1.5 MPa and a stagnation temperature of 350°C. The steam leaves the last
stage at a stagnation pressure of 7.0 kPa with a corresponding dryness fraction of 0.95. By
using a Mollier chart for steam and assuming that the stagnation state point locus is a straight
line joining the initial and final states, determine

(i) the stagnation conditions between each stage assuming that each stage does the same
amount of work;

(ii) the total-to-total efficiency of each stage;
(iii) the overall total-to-total efficiency and total-to-static efficiency assuming the steam enters

the condenser with a velocity of 200 m/s;
(iv) the reheat factor based upon stagnation conditions.
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CHAPTER

Dimensional Analysis: Similitude 2
If you have known one you have known all.

Terence, Phormio

2.1 DIMENSIONAL ANALYSIS AND PERFORMANCE LAWS
The widest comprehension of the general behaviour of all turbomachines is, without doubt, obtained
from dimensional analysis. This is the formal procedure whereby the group of variables representing
some physical situation is reduced to a smaller number of dimensionless groups. When the number of
independent variables is not too great, dimensional analysis enables experimental relations between vari-
ables to be found with the greatest economy of effort. Dimensional analysis applied to turbomachines has
two further important uses: (a) prediction of a prototype’s performance from tests conducted on a scale
model (similitude); (b) determination of the most suitable type of machine, on the basis of maximum
efficiency, for a specified range of head, speed, and flow rate. Several methods of constructing non-
dimensional groups have been described by Douglas, Gasiorek, and Swaffield (1995) and Shames
(1992), among other authors. The subject of dimensional analysis was made simple and much more inter-
esting by Edward Taylor (1974) in his comprehensive account of the subject. It is assumed here that the
basic techniques of forming non-dimensional groups have already been acquired by the student.

Adopting the simple approach of elementary thermodynamics, a control surface of fixed shape,
position, and orientation is drawn around the turbomachine (Figure 2.1). Across this boundary, fluid
flows steadily, entering at station 1 and leaving at station 2. As well as the flow of fluid there is a
flow of work across the control surface, transmitted by the shaft either to, or from, the machine. All
details of the flow within the machine can be ignored and only externally observed features such as
shaft speed, flow rate, torque, and change in fluid properties across the machine need be considered.
To be specific, let the turbomachine be a pump (although the analysis could apply to other classes of
turbomachine) driven by an electric motor. The speed of rotation N, can be adjusted by altering the
current to the motor; the volume flow rate Q, can be independently adjusted by means of a throttle
valve. For fixed values of the set Q and N, all other variables, such as torque, τ, and head, H, are
thereby established. The choice of Q and N as control variables is clearly arbitrary and any other
pair of independent variables such as τ and H could equally well have been chosen. The important
point to recognise is that there are, for this pump, two control variables.

If the fluid flowing is changed for another of different density ρ, and viscosity μ, the performance of
the machine will be affected. Note also that, for a turbomachine handling compressible fluids, other
fluid properties are important and are discussed later.

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
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So far we have considered only one particular turbomachine, namely a pump of a given size. To
extend the range of this discussion, the effect of the geometric variables on the performance must now
be included. The size of machine is characterised by the impeller diameter D, and the shape can be
expressed by a number of length ratios, l1 ⁄D, l2 ⁄D, etc.

2.2 INCOMPRESSIBLE FLUID ANALYSIS
The performance of a turbomachine can now be expressed in terms of the control variables, geometric vari-
ables, and fluid properties. For the hydraulic pump it is convenient to regard the net energy transfer gH, the
efficiency η, and power supplied P as dependent variables and to write the three functional relationships as

gH ¼ f1 Q, N, D, ρ, μ,
l1
D
,
l2
D
, � � �

� �
, ð2:1aÞ

η ¼ f2 Q, N, D, ρ, μ,
l1
D
,
l2
D
, � � �

� �
, ð2:1bÞ

P ¼ f3 Q, N, D, ρ, μ,
l1
D
,
l2
D
, � � �

� �
, ð2:1cÞ

By the procedure of dimensional analysis using the three primary dimensions, mass, length, and time,
or alternatively, using three of the independent variables we can form the dimensionless groups. The
latter, more direct procedure requires that the variables selected, ρ, N, D, do not of themselves form a
dimensionless group. The selection of ρ, N, and D as common factors avoids the appearance of special
fluid terms (e.g., μ, Q) in more than one group and allows gH, η, and P to be made explicit. Hence, the
three relationships reduce to the following easily verified forms:

Energy transfer coefficient, sometimes called head coefficient

ψ ¼ gH

ðNDÞ2 ¼ f4
Q

ND3
,
ρND2

μ
,
l1
D
,
l2
D
, � � �

� �
, ð2:2aÞ

Control surface

Control volume

Throttle valve
(1)

(2)
Motor

FIGURE 2.1

Turbomachine Considered as a Control Volume
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Efficiency, which is already non-dimensional

η ¼ f5
Q

ND3
,
ρND2

μ
,
l1
D
,
l2
D
, � � �

� �
, ð2:2bÞ

Power coefficient

P̂ ¼ P

ρN3D5
¼ f6

Q

ND3
,
ρND2

μ
,
l1
D
,
l2
D
, � � �

� �
: ð2:2cÞ

The non-dimensional group Q ⁄ (ND3) is a volumetric flow coefficient and ρND2
⁄μ is a form of

Reynolds number, Re. In non-hydraulic flow turbomachines, an alternative to Q ⁄ (ND3) that is
frequently used is the velocity (or flow) coefficient Φ ¼ cm ⁄U, where U is the mean blade speed
and cm the average meridional velocity. Since

Q ¼ cm � flow areaµ cmD
2 andU µND,

then

Q

ND3
µ

cm
U

¼ Φ:

Both of these non-dimensional groups are usually referred to as a flow coefficient, Φ.
Because of the large number of independent groups of variables on the right-hand side of eqns. (2.2a–c),

those relationships are virtuallyworthless unless certain terms can be discarded. In a family of geometrically
similar machines l1 ⁄D, l2 ⁄D are constant and may be eliminated forthwith. Furthermore, it is found by
experiment that provided Re > 2 � 105, the effects of Re on the performance of turbomachines is small.
This is true because at high Re the boundary layers on the blades of a turbomachine are predominantly tur-
bulent and very thin. They therefore have little impact on the global flow-field. Efficiency is the variable that
can be most affected by Reynolds number and typically η will rise 1–2% as Re increases an order of mag-
nitude. For turbomachines handling water the kinematic viscosity, ν ¼ μ ⁄ρ, is very small and, although
speed, expressed by ND, may be low the corresponding Reynolds number is still high and its effects
may be ignored in a first approximation.

Note that the effects of surface finish have also been ignored in the analysis. At high Reynolds
numbers, greater surface roughness tends to increase skin friction losses and thus reduce the efficiency.
The effects at lower Reynolds numbers are more complex as the boundary layers may be laminar or
undergoing transition to turbulence. Here it is assumed that both the surface finish effects are small and
that the Reynolds numbers are high. The functional relationships for geometrically similar hydraulic
turbomachines are then

ψ ¼ f4½Q=ðND3Þ� ð2:3aÞ

η ¼ f5½Q=ðND3Þ� ð2:3bÞ

P̂ ¼ f6½Q=ðND3Þ�: ð2:3cÞ
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This is as far as the reasoning of dimensional analysis alone can be taken; the actual form of the func-
tions f4, f5, and f6 must be ascertained by experiment.

One relation between ψ, Φ, η, and P̂ may be immediately stated. For a pump the net hydraulic
power, PN equals ρQgH, which is the minimum shaft power required in the absence of all losses.
As shown in Chapter 1, we define pump efficiency η ¼ PN ⁄P ¼ ρQgH ⁄P. Therefore,

P ¼ 1
η

Q

ND3

� �
gH

ðNDÞ2 ρN
3D5: ð2:4Þ

Thus, f6 may be derived from f4 and f5 since P̂¼Φψ ⁄η. For a turbine the net hydraulic power PN sup-
plied is greater than the actual shaft power delivered by the machine and the efficiency η ¼ P ⁄PN. This
can be rewritten as P̂ ¼ Φψη by reasoning similar to the preceding considerations.

2.3 PERFORMANCE CHARACTERISTICS FOR LOW SPEED MACHINES
The operating condition of a turbomachine will be dynamically similar at two different rotational
speeds if all fluid velocities at corresponding points within the machine are in the same direction
and proportional to the blade speed. In other words, the flow is dynamically similar if the streamline
patterns relative to the blades are geometrically similar. When two flow-fields are dynamically similar
then all the dimensionless groups are the same. As shown by eqns. (2.3), for an incompressible flow
machine (one in which M < 0.3 everywhere) operating at high Reynolds number, dynamic similarity is
achieved once the flow coefficient is the same. Thus, the non-dimensional presentation of performance
data has the important practical advantage of collapsing results into a single curve that would otherwise
require a multiplicity of curves if plotted dimensionally.

Evidence in support of the foregoing assertion is provided in Figure 2.2, which shows experimental
results obtained by one author (at the University of Liverpool) on a simple centrifugal laboratory pump.
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Dimensionless Head–Volume Characteristic of a Centrifugal Pump
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Within the normal operating range of this pump, 0.03 < Q ⁄ (ND3) < 0.06, very little systematic
scatter is apparent, which might be associated with a Reynolds number effect, for the range of speeds
2500 � N � 5000 rev/min. For smaller flows, Q ⁄ (ND3) < 0.025, the flow became unsteady and the
manometer readings of uncertain accuracy, but nevertheless, dynamically similar conditions still
appear to hold true. Examining the results at high flow rates one is struck by a marked systematic
deviation away from the “single-curve” law at increasing speed. This effect is due to cavitation, a
high speed phenomenon of hydraulic machines caused by the release of vapour bubbles at low pres-
sures, which is discussed later in this chapter. It will be clear at this stage that under cavitating flow
conditions, dynamical similarity is not possible.

The non-dimensional results shown in Figure 2.2 have, of course, been obtained for a particular
pump. They would also be approximately valid for a range of different pump sizes so long as all
these pumps are geometrically similar and cavitation is absent. Thus, neglecting any change in per-
formance due to change in Reynolds number, the dynamically similar results in Figure 2.2 can be
applied to predicting the dimensional performance of a given pump for a series of required speeds.
Figure 2.3 shows such a dimensional presentation. It will be clear from the preceding discussion that
the locus of dynamically similar points in the H–Q field lies on a parabola since H varies as N2 and Q
varies as N.

2.4 COMPRESSIBLE FLUID ANALYSIS
The application of dimensional analysis to compressible flow increases, not unexpectedly, the
complexity of the functional relationships obtained in comparison with those already found for incom-
pressible fluids. Even if the fluid is regarded as a perfect gas, in addition to the previously used fluid
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properties, two further characteristics are required; these are a01, the stagnation speed of sound at entry
to the machine, and γ, the ratio of specific heats Cp ⁄Cν. In the following analysis the compressible
fluids under discussion are either perfect gases or else dry vapours approximating in behaviour to a
perfect gas.

Another choice of variables is preferred when appreciable density changes occur across the
machine. Instead of volume flow rate Q, the mass flow rate _m is used; likewise for the head change
H, the isentropic stagnation enthalpy change Δh0s is employed. The choice of this last variable is a
significant one for, in an ideal and adiabatic process, Δh0s is equal to the work done per unit mass
of fluid. Since heat transfer from the casings of turbomachines is, in general, of negligible magnitude
compared with the flux of energy through the machine, temperature on its own may be safely excluded
as a fluid variable. However, temperature is an easily observable characteristic and, for a perfect gas,
can be easily introduced by means of the equation of state, p ⁄ρ ¼ RT.

The performance parameters Δh0s, η, and P, for a turbomachine handling a compressible flow, can
be expressed functionally as

Δh0s, η, P ¼ f ðμ, N,D, _m, ρ01, a01, γÞ: ð2:5Þ
Because ρ0 and a0 change through a turbomachine, the values of these fluid variables are selected at
inlet, denoted by subscript 1. Equation (2.5) expresses three separate functional relationships, each of
which consists of eight variables. Again, selecting ρ01, N, and D as common factors, each of these three
relationships may be reduced to five dimensionless groups:

Δh0s
N2D2

, η,
P

ρ01N3D5
¼ f

_m

ρ01ND3
,
ρ01ND

2

μ
,
ND

a01
, γ

� �
: ð2:6aÞ

The group ND ⁄a01 can be regarded as a blade Mach number because ND is proportional to blade
speed. Since this appears as an independent variable on the right-hand side of the equation, it can
be used to re-write the preceding relationships in terms of the inlet stagnation speed of sound a01:

Δh0s
a201

, η,
P

ρ01a
3
01D

2
¼ f

_m

ρ01a01D2
,
ρ01a01D

μ
,
ND

a01
, γ

� �
: ð2:6bÞ

For a machine handling a perfect gas a different set of functional relationships is often more useful.
These may be found either by selecting the appropriate variables for a perfect gas and working through
again from first principles or, by means of some rather straightforward transformations, rewriting
eqn. (2.6b) to give more suitable groups. The latter procedure is preferred here as it provides a useful
exercise. As an example consider an adiabatic compressor handling a perfect gas. The isentropic
stagnation enthalpy rise can be written as Cp(T02s � T01) for a perfect gas. As shown in Chapter 1,
the isentropic relationship between temperature and pressure is given by

T02s
T01

¼ p02
p01

� �ðγ� 1Þ=γ
:

The isentropic stagnation enthalpy rise can therefore be written as

Δh0s ¼ CpT01½ð p02=p01Þðγ� 1Þ=γ � 1�: ð2:7Þ
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Since Cp ¼ γR ⁄ (γ � 1) and a201 ¼ γRT01, then a201 ¼ (γ � 1)CpT01 and thus,

Δh0s
a201

¼ Δh0s
ðγ� 1ÞCpT01

¼ 1
ðγ� 1Þ

p02
p01

� �ðγ� 1Þ=γ
� 1

" #
¼ f p02=p01, γð Þ:

Using the equation of state, p ⁄ρ ¼ RT, the non-dimensional mass flow can be more conveniently
expressed as

m̂ ¼ _m

ρ01a01D2
¼ _mRT01

p01
ffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2

¼ _m
ffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2p01γ

:

The power coefficient can also be re-written as

P̂ ¼ P

ρ01a
3
01D

2
¼ _mCpΔΤ0

ð ρ01a01D2Þa201
¼ m̂

CpΔΤ0

a201
¼ m̂

ðγ� 1Þ
ΔΤ0

T01
:

Collecting together these newly formed non-dimensional groups and inserting them in eqn. (2.6b) leads
to a simpler and more useful functional relationship:

p02
p01

, η,
ΔΤ0

Τ01
¼ f

_m
ffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2p01

,
NDffiffiffiffiffiffiffiffiffiffiffi
γRT01

p , Re, γ

� �
: ð2:8Þ

A key advantage of eqn. (2.8) over eqn. (2.6b) is that the non-dimensional groups are in terms of
inlet and exit stagnation temperatures and pressures, which are parameters that are readily measured
for a turbomachine. For a machine handling a single gas γ can be dropped as an independent variable.
If, in addition, the machine operates only at high Reynolds numbers (or over a small speed range), Re
can also be dropped. Equation (2.8) can then be written with just two non-dimensional groups on the
right-hand side:

p02
p01

, η,
ΔΤ0

Τ01
¼ f

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

,
NDffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
( )

: ð2:9aÞ

In this equation, the non-dimensional group, _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
=D2p01 is often referred to as the flow capa-

city, introduced in the compressible flow section of Chapter 1. This is the most widely used form of
non-dimensional mass flow, although the forms in eqns. (2.6b) and (2.8) are also valid. For machines
of a known size and fixed working fluid, it has become customary, in industry at least, to delete γ, R,
Cp, and D from eqn. (2.9a) and similar expressions. Under these conditions eqn. (2.9a) becomes

p02
p01

, η,
ΔΤ 0

Τ01
¼ f

_m
ffiffiffiffiffiffiffi
T01

p
p01

,
Nffiffiffiffiffiffiffi
T01

p
� �

: ð2:9bÞ

Note that by omitting the diameter D and gas constant R, the independent variables in eqn. (2.9b) are
no longer dimensionless.

Equations (2.9a) and (2.9b) show that two variables are required to fix the operating point of a
compressible flow machine. This compares to the one variable needed to fix the operating point of
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an incompressible flow machine, eqn. (2.3). In all cases, for dynamic similarity the streamline pattern
relative to the blades must be geometrically similar. In an incompressible flow machine it is enough
just to fix the relative inlet angle to the blades (via the flow coefficient). In a compressible flow
machine, the streamline pattern within the blade rows also depends on the variation of density through
the blade passages. Therefore a second parameter is needed to fix the flow Mach numbers and thus fix
the variation of density.

Similarly to the incompressible case, the performance parameters, p02 ⁄p01, η, and ΔT0 ⁄T01 are not
entirely independent and it is straightforward to write an equation relating the three. For a compressor,
the isentropic efficiency is defined in Chapter 1 and can be written as

ηc ¼
Δh0s
Δh0

¼ ½ðp02=p01Þγ=ðγ� 1Þ � 1�
ΔΤ 0=Τ01

: ð2:10Þ

Flow Coefficient and Stage Loading
In compressible flow machines, the flow coefficient, Φ, is an important parameter for design and ana-
lysis. It is defined in the same way as given earlier for incompressible machines, i.e., Φ ¼ cm ⁄U where
U is the mean blade speed and cm the average meridional velocity. However, in the compressible case,
the flow coefficient alone cannot be used to fix the operating condition of a machine. This is because
the flow coefficient is also a function of the non-dimensional parameters given in eqn. (2.9a). This is
straightforward to show via the following algebraic manipulation:

Φ ¼ cm
U

¼ _m

ρ01A1U
¼ _mRT01

p01A1U
µ

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

�
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
U

¼ f
_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

,
NDffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
( )

:

Note that the non-dimensional mass flow _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
=D2p01 is distinct from a flow coefficient because

it does not involve the blade speed.
The stage loading, ψ, is another key design parameter for non-hydraulic turbomachines. It is

defined as

ψ ¼ Δh0
U2

: ð2:11Þ

This parameter is similar in form to the head coefficient ψ used in hydraulic machines (eqn. 2.2a), but
there are subtle differences. Most importantly, stage loading is a non-dimensional form of the actual
specific stagnation enthalpy change, whereas the head coefficient is a non-dimensional measure of
the maximum, or isentropic, work that a hydraulic machine can achieve. Note that the stage loading
can be related to the non-dimensional parameters in eqn. (2.9a) as follows:

ψ ¼ Δh0
U2

¼ CpΔT0
CpT01

CpT01
U2

¼ ΔT0
T01

Uffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
 !2

¼ f
_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CpT01

p
D2p01

,
NDffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
( )

:

,

Thus, the stage loading is also fixed once both the non-dimensional mass flow and the non-dimensional
blade speed (or blade Mach number) are fixed. In many cases, the stage loading is used in place of the
power coefficient ΔT0 ⁄T0 given in eqn. (2.9a).
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2.5 PERFORMANCE CHARACTERISTICS FOR HIGH SPEED MACHINES
Compressors
The performance map of a high speed compressor is essentially a graphical representation of the func-
tional relationship given in eqn. (2.9b). As shown in the example in Figure 2.4, the pressure ratio across
the whole machine is plotted as a function of _m

ffiffiffiffiffiffiffi
T01

p
=p01 for several fixed values of N=

ffiffiffiffiffiffiffi
T01

p
, this

being a customary method of presentation. Figure 2.4 also shows contours of compressor efficiency
on the same axes.

Each of the constant speed curves on the compressor characteristic terminate at the surge (or
stall) line. Beyond this point the operation is unstable. A discussion of the phenomena of surge
and stall is included in Chapter 5. At high speeds and low pressure ratios the constant speed curves
become vertical. In these regions of the characteristic, no further increase in _m

ffiffiffiffiffiffiffi
T01

p
=p01 is possible

since the Mach number across a section of the machine has reached unity and the flow is said to be
choked.

A compressor is able to operate anywhere below and to the right of the surge line. However, it
is usually constrained to a single operating line, which is set by the flow area downstream of the
compressor. The design operating line is often specified so that it passes through the point of
peak compressor efficiency. However, its exact position is a matter of judgement for the compressor
designer. The term stall margin is often used to describe the relative position of the operating
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line and the surge line. There are several ways of defining the surge margin (SM) and a fairly
simple one often used is

SM ¼ ð prÞs �ð prÞo
ð prÞo

, ð2:12Þ

where (pr)o is a pressure ratio at a point on the operating line at a certain corrected speed N=
ffiffiffiffiffiffiffi
T01

p
and ( pr)s is the corresponding pressure ratio on the surge line at the same corrected speed. With this
definition a surge margin of 20% would be typical for a compressor used within a turbojet engine.
Several other definitions of stall margin and their merits are discussed by Cumpsty (1989).

Turbines
Figure 2.5 shows a typical high speed turbine characteristic. Turbine characteristics are plotted in the
same way as compressor characteristics but the behaviour is very different. Turbines are able to oper-
ate with a high pressure ratio across each stage because the boundary layers on the surfaces of the
turbine blades are accelerating and therefore stable. The high pressure ratios soon lead to choking
in the turbine stator blades and therefore a fixed non-dimensional mass flow through the machine.
Once the turbine stators are fully choked, the operating point is independent of N=

ffiffiffiffiffiffiffi
T01

p
because

the rotation of the blades has virtually no influence on either the turbine pressure ratio or the non-
dimensional mass flow rate.
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Example 2.1
The compressor of a jet engine is tested at sea level on a stationary test bed on a day when the atmospheric tem-
perature and pressure is 298 K and 101 kPa, respectively. When running at its design operating point, the mass
flow rate through the compressor is measured as 15 kg/s and the rotational speed is 6200 rpm. Determine the
mass flow rate and rotational speed when the compressor is operating at the design operating point during high
altitude cruise with an inlet stagnation temperature of 236 K and an inlet stagnation pressure of 10.2 kPa.

The design pressure ratio of the compressor is 20. If the compressor isentropic efficiency is determined from
the test to be 85%, calculate the power input at the cruise condition. Assume for air that γ ¼ 1.4 and Cp ¼ 1005 J
kg�1 K�1 throughout.

Solution
At cruise and during the test the compressor is operating at its design non-dimensional operating point. Therefore,
all the non-dimensional performance parameters of the compressor will be the same at both conditions.

The non-dimensional mass flow is

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2p01

� �
cruise

¼ _m
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
D2p01

� �
test

:

Since there is no change in the dimensions of the compressor or in the gas properties of the working fluid, this
reduces to

_m
ffiffiffiffiffiffiffi
T01

p
p01

� �
cruise

¼ _m
ffiffiffiffiffiffiffi
T01

p
p01

� �
test

:

During the test, the compressor is stationary and therefore the inlet air stagnation temperature and pressure are
equal to the atmospheric static temperature and pressure. The mass flow at cruise is thus,

_mcruise ¼ p01ffiffiffiffiffiffiffi
T01

p
� �

cruise

� _m
ffiffiffiffiffiffiffi
T01

p
p01

� �
test

¼ 10:2ffiffiffiffiffiffiffiffi
236

p � 15� ffiffiffiffiffiffiffiffi
298

p

101
¼ 1:70 kg=s:

Similarly for the non-dimensional speed,

Nffiffiffiffiffiffiffi
T01

p
� �

cruise

¼ Nffiffiffiffiffiffiffi
T01

p
� �

test

and thus, Ncruise ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01, cruise

p � Nffiffiffiffiffiffiffi
T01

p
� �

test

¼
ffiffiffiffiffiffiffiffi
236

p
� 6200ffiffiffiffiffiffiffiffi

298
p
� �

¼ 5520 rpm:

The input power to the compressor at the cruise condition can be found using the fact that the non-dimensonal
power coefficient ΔT0 ⁄ T0 is unchanged between the two conditions. From eqn. (2.10),

ΔΤ 0

Τ01
¼
�
ð p02=p01Þγ=ðγ� 1Þ � 1

�
ηc

¼ 200:4=1:4 � 1
0:85

¼ 1:592,

Pcruise ¼ ½ _mCpΔT0�cruise ¼ ½ _mCpT01�cruise
ΔT0
T01

� �
¼ 1:70� 1005� 236� 1:592 ¼ 642 kW:
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2.6 SPECIFIC SPEED AND SPECIFIC DIAMETER
The turbomachine designer is often faced with the basic problem of deciding what type of machine will
be the best choice for a given duty. At the outset of the design process some overall requirements of the
machine will usually be known. For a hydraulic pump these would include the head required H, the
volume flow rate Q, and the rotational speed N. In contrast, if a high speed gas turbine was being con-
sidered, the initial specification would probably cover the mass flow rate _m, the specific work Δh0, and
the preferred rotational speed Ω.

Two non-dimensional parameters called the specific speed, Ns, and specific diameter, Ds, are often
used to decide upon the choice of the most appropriate machine. The specific speed is derived from the
non-dimensional groups defined in eqn. (2.3) in such a way that the characteristic diameter D of the
turbomachine is eliminated. The value of Ns gives the designer a guide to the type of machine that will
provide the normal requirement of high efficiency at the design condition. Similarly, the specific dia-
meter is derived from these groups by eliminating the speed, N.

Consider a hydraulic turbomachine with fixed geometry. As shown by eqn. (2.3b) there will be a
unique relationship between efficiency and flow coefficient if Reynolds number effects are negligible
and cavitation absent. If the maximum efficiency η ¼ ηmax, occurs at a unique value of flow coefficient
Φ ¼ Φ1 and corresponding unique values of ψ ¼ ψ1 and P̂ ¼ P̂1, it is possible to write

Q

ND3
¼ Φ1 ¼ constant, ð2:13aÞ

gH

N2D2
¼ ψ1 ¼ constant, ð2:13bÞ

P

ρN3D5
¼ P̂1 ¼ constant: ð2:13cÞ

It is a simple matter to combine any pair of these expressions in such a way as to eliminate the dia-

meter. For a pump the customary way of eliminating D is to divide Φ1=2
1 by ψ3=4

1 : Thus, at the operating
point giving maximum efficiency,

Ns ¼ Φ1=2
1

ψ3=4
1

¼ NQ1=2

ðgHÞ3=4
, ð2:14aÞ

where Ns is called the specific speed. The term specific speed is justified only to the extent that Ns is
directly proportional to N. It is sometimes referred to as a shape factor since its value characterises the
shape of the machine required.

In the case of a hydraulic turbine the power specific speed Nsp is often used and it is defined by

Nsp ¼ P̂
1=2
1

ψ5=4
1

¼ NðP=ρÞ1=2
ðgHÞ5=4

: ð2:15aÞ
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There is a simple connection between Ns and Nsp. By dividing eqn. (2.15a) by eqn. (2.14a) we
obtain, for a hydraulic turbine,

Nsp

Ns
¼ NðP=ρÞ1=2

ðgHÞ5=4
ðgHÞ3=4
NQ1=2

¼ P

ρgQH

� �1=2

¼ ffiffiffi
η

p
: ð2:16Þ

Similarly to specific speed, to form the specific diameter, any pair of expressions in eqn. (2.13) can
be used to eliminate the speed, N. In the case of a pump we divide ψ1/4 by Φ1/2. Thus,

Ds ¼ ψ1=4 =Φ1=2 ¼ DðgHÞ1=4
Q1=2

: ð2:17Þ

Equations (2.14a), (2.15a), and (2.17) are dimensionless. It is always safer and less confusing to
calculate specific speed and specific diameter in one or another of these forms rather than dropping
the factors g and ρ, which would make the equations dimensional and any values of specific speed
or specific diameter obtained using them would then depend upon the choice of the units employed.
The dimensionless forms of Ns (and Nsp) and Ds are the only ones used in this book. Another point
arises from the fact that the rotational speed, N, is often expressed in the units of revolutions per
unit of time so that, although Ns is dimensionless, numerical values of specific speed need to be
thought of as revs. Alternative versions of eqns. (2.14a) and (2.15a) specified in radians are formed
by simply replacing N with Ω in:

Ωs ¼ ΩQ1=2

ðgHÞ3=4
, ð2:14bÞ

Ωsp ¼ Ω
ffiffiffiffiffiffiffiffi
P=ρ

p
ðgHÞ5=4

: ð2:15bÞ

The concept of specific speed just described is illustrated in Figure 2.6. This shows contours of Ωs

plotted as a function of flow coefficient Φ and head coefficient ψ using eqn. (2.14a). Also plotted on
the same axes are typical characteristics of three types of hydraulic pumps. This plot demonstrates how
for a given type of machine one value of Ns (or Ωs) passes through the operating point of peak effi-
ciency. In other words, once the specific speed is known, the machine type giving peak efficiency can
be determined. Figure 2.6 also shows how low specific speed suits radial machines, since these tend to
give a high pressure change to a low mass flow rate. In contrast, axial flow stages with widely spaced
blades, are suited to high specific speed applications because they impart a small pressure change to a
large mass flow rate.

Given that specific speed is defined at the point of maximum efficiency of a turbomachine, it
becomes a parameter of great importance in selecting the type of machine required for a given duty.
The maximum efficiency condition replaces the condition of geometric similarity, so that any alteration
in specific speed implies that the machine design changes. Broadly speaking, each different class of
machine has its optimum efficiency within its own fairly narrow range of specific speed. Figure 2.7
shows the ranges of specific speed appropriate to different types of turbomachine. Once the specific
speed at the design condition is found, a well-designed machine selected using Figure 2.7, should
give the maximum possible design efficiency.
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Example 2.2

(a) A hydraulic turbine with a runner outside diameter of 4.31 m operates with an effective head H of 543 m at a
volume flow rate of 71.5 m3/s and produces 350 MW of shaft power at a rotational speed of 333 rev/min.
Determine, the specific speed, the specific diameter, and efficiency of this turbine.

(b) Another geometrically and dynamically similar turbine with a runner 6.0 m diameter is to be built to operate
with an effective head of 500 m. Determine the required flow rate, the expected power output, and the rota-
tional speed of the turbine.

Solution
(a) Note: All speeds are converted to rad/s; therefore Ω ¼ 333 � π/30 ¼ 34.87 rad/s.

Using eqn. (2.14b), the specific speed is

Ωs ¼ ΩQ1=2=ðgHÞ3=4 ¼ 34:87� 71:50:5

ð9:81� 543Þ0:75 ¼ 0:473 rad:

Using eqn. (2.17), the specific diameter is

Ds ¼ DðgHÞ1=4
Q1=2

¼ 4:31�ð9:81� 543Þ1=4
71:41=2

¼ 4:354:

For the turbine the net hydraulic power is

Pn ¼ ρgQH ¼ 9; 810� 71:5� 543 ¼ 380:9� 106 ¼ 380:9 MW:
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The turbine efficiency is

η ¼ 350=380:9 ¼ 0:919:

(b) Transposing eqn. (2.17) we can find the volume flow rate:

Q ¼ ðD=DsÞ2ðgHÞ1=2 ¼ ð6=4:354Þ2ð9:81�500Þ1=2 ¼ 133m3=s,

and the power output is

P ¼ ηρgQH ¼ 0:919� 9810� 133� 500 ¼ 599:5MW:

We can determine the rotational speed from eqn. (2.14a) as

N ¼ ð30=πÞΩsðgHÞ3=4=Q1=2 ¼ 0:473�ð9:81� 500Þ3=4=1331=2 ¼ 229:6 rpm:

It is possible that some adjustment to the speed would be needed to make it synchronous with the
local electricity grid.
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The Cordier Diagram
A rough but useful guide to the selection of the most appropriate type and size of compressor, pump or
fan for a given duty and optimum efficiency is obtained by means of the Cordier diagram, Figure 2.8.
Although the method was originally devised by Cordier (1953) further details are more readily
accessed from the work of Csanady (1964) and, with some added elaboration, by Lewis (1996).
Figure 2.8 shows, on the right-hand side, the recommended ranges for various types of turbomachines
for which the method applies. It must be mentioned that the line presented is, in fact, a mean curve
based upon results obtained from a large number of machines, so it represents a fairly broad spread
of results on either side of the line. For many designs it would be possible to diverge from the line
and still obtain high performance pumps, fans or compressors.

Following Lewis, an interesting and useful alternative presentation of the Cordier diagram can be
made with ordinates Φ and ψ from the relationships already given. From eqns. (2.14a) and (2.17) we
can derive the flow coefficient, Φ, and stage loading coefficient, ψ, as

Φ ¼ 1=ðNsD
3
s Þ, ð2:18Þ

ψ ¼ 1=ðN2
s D

2
s Þ: ð2:19Þ
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By introducing the Cordier line data into these last two equations and replotting this information, a
new and more definite shape of the optimum machine curves results, shown in Figure 2.9. The new
curve is clearly divided into two main parts with centrifugal pumps operating at a fairly constant
stage loading coefficient at roughly ψ ¼ 0.1 over a flow coefficient range of 0.0001 � Φ � 0.04
and axial machines operating with a wide range of stage loading coefficients, 0.005 � ψ � 0.05
and also a wide range of Φ. It is seen that mixed flow machines appear to be stuck in between in
quite a narrow range of both ψ and Φ. One reason advanced for this apparently limited range is
that designers would have a natural preference for either axial or centrifugal types as these have
less manufacturing complexity than mixed flow machines. However, in some important high techno-
logical applications mixed flow machines have been the crucial choice. It was pointed out by Lewis
that some applications, such as gas cooled nuclear reactors and hovercraft lift fans, which require a
high mass flow at a high pressure ratio, are ideally suited for mixed flow fans rather than a single
stage compressor.

Compressible Specific Speed
Specific speed has mostly been applied to the design and selection of low speed and hydraulic turbo-
machines. However, the notion of specific speed can equally be applied to a compressible flow
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machine, and it is particularly useful for determining whether an axial or a radial flow machine is best
for a particular requirement. As described in Baskharone (2006), for high speed machines the hydraulic
machine definition is simply expressed in terms of parameters appropriate to compressible flow:

Ns ¼ NQ1=2

ðgHÞ3=4
¼ N

_m

ρe

� �1=2
ðΔh0sÞ�3=4: ð2:20Þ

Note that in eqn. (2.20) the isentropic specific work Δh0s is used rather than the actual specific work
Δh0. In the case of a compressor this makes sense since the isentropic specific work can be determined
from the required pressure ratio p02 ⁄p01 using eqn. (2.7). The required pressure ratio is likely to be
known at the outset of the design process, whereas the actual specific work input depends on the com-
pressor efficiency, which in general will not be known. In the case of a turbine, the actual specific work
is more likely to be a known requirement. In this case, efficiency can be estimated or the isentropic
work approximated to be equal to the actual work required.

Equation (2.20) also requires the density of the working fluid at exit ρe. This can be estimated
through knowledge of the expected conditions at exit from the machine. The extra uncertainty intro-
duced by this is small and will usually have no effect on the preferred type of machine selected.

Example 2.3
An air turbine is required for a dentist’s drill. For the drill bit to effectively abrade tooth enamel, the turbine must
rotate at high speed, around 350,000 rpm. The turbine must also be very small so that it can be used to access all
parts of a patient’s mouth and an exit air flow rate in the region of 10 L/min is required for this. The turbine is to be
driven by supply air at a pressure of 3 bar and a temperature of 300 K.

Calculate the specific speed of the turbine and use this to determine the type of machine required. Also esti-
mate the power consumption of the turbine and account for how this power is used.

Solution
Putting the quantities into standard SI units,

the rotational speed, N ¼ 300;000=60 ¼ 5000 rev=s,

the exit volume flow rate, _m=ρe ¼ Qe ¼ 10=ð1000� 60Þ ¼ 0:000167m3=s:

The isentropic specific work can be estimated assuming an isentropic expansion through the turbine. Treating
air as a perfect gas with γ ¼ 1.4 and Cp ¼ 1005 J kg�1 K�1,

Δh0s ¼ CpT01
	
1�ð p02=p01Þðγ� 1Þ=γ
 ¼ 1005� 300� 1� 1

3

� �0:4=1:4
" #

¼ 81:29 kJ=kg:

The specific speed can now be calculated from the information provided using eqn. (2.20):

Ns ¼ ΝQ1=2

ðgHÞ3=4
¼ N

_m

ρe

� �1=2

ðΔh0sÞ�3=4 ¼ 5000� 0:0001671=2

ð81, 290Þ3=4
@ 0:013 rev

and

Ωs ¼ Νs � 2π @ 0:084 rad:
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Using the plot of machine type versus specific speed presented in Figure 2.7 it is immediately apparent that the
only kind of turbine suitable for this very low specific speed is a Pelton wheel. In fact, all modern high speed
dentist drills use Pelton wheels and a photograph of a typical impeller from one is shown in Figure 2.10.

The power used by the turbine can be approximated from the mass flow rate and the specific isentropic work
output. Using a typical value for the exit air density this gives

P ¼ _mΔh0s ¼ ρeQeΔh0s @ 1:16� 0:000167� 81, 290 ¼ 15:7W:

The majority of this power will be dissipated as heat through friction in the bearings, losses in the Pelton
wheel, and friction with the tooth. This heat dissipation is the reason why an appreciable amount of cooling
water is required for modern high speed dentist drills.

2.7 CAVITATION
Cavitation is the boiling of a liquid at normal temperature when the static pressure is made sufficiently
low. It may occur at the entry to pumps or at the exit from hydraulic turbines in the vicinity of the
moving blades. The dynamic action of the blades causes the static pressure to reduce locally in a region
that is already normally below atmospheric pressure and cavitation can commence. The phenomenon is
accentuated by the presence of dissolved gases that are released with a reduction in pressure.

For the purpose of illustration consider a centrifugal pump operating at constant speed and capacity.
By steadily reducing the inlet pressure head a point is reached when streams of small vapour bubbles
appear within the liquid and close to solid surfaces. This is called cavitation inception and commences
in the regions of lowest pressure. These bubbles are swept into regions of higher pressure where they
collapse. This condensation occurs suddenly, the liquid surrounding the bubbles either hitting the walls
or adjacent liquid. The pressure wave produced by bubble collapse (with a magnitude on the order of
400 MPa) momentarily raises the pressure level in the vicinity and the action ceases. The cycle then

FIGURE 2.10

Pelton Wheel Turbine Impeller from a High Speed Dental Drill (from Sirona Dental)
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repeats itself and the frequency may be as high as 25 kHz (Shepherd, 1956). The repeated action of
bubbles collapsing near solid surfaces leads to the well-known cavitation erosion.

The collapse of vapour cavities generates noise over a wide range of frequencies—up to 1 MHz has
been measured (Pearsall, 1972), i.e., so-called white noise. Apparently the collapsing smaller bubbles
cause the higher frequency noise and the larger cavities the lower frequency noise. Noise measurement
can be used as a means of detecting cavitation (Pearsall, 1966; 1967). Pearsall and McNulty (1968)
have shown experimentally that there is a relationship between cavitation noise levels and erosion
damage on cylinders and conclude that a technique could be developed for predicting the occurrence
of erosion.

Up to this point no detectable deterioration in performance occurs. However, with further reduction
in inlet pressure, the bubbles increase both in size and number, coalescing into pockets of vapour that
affects the whole field of flow. This growth of vapour cavities is usually accompanied by a sharp drop
in pump performance as shown conclusively in Figure 2.2 (for the 5000 rev/min test data). It may seem
surprising to learn that, with this large change in bubble size, the solid surfaces are much less likely to
be damaged than at inception of cavitation. The avoidance of cavitation inception in conventionally
designed machines can be regarded as one of the essential tasks of both pump and turbine designers.
However, in certain recent specialised applications pumps have been designed to operate under super-
cavitating conditions. Under these conditions large size vapour bubbles are formed, but bubble col-
lapse takes place downstream of the impeller blades. An example of the specialised application of a
supercavitating pump is the fuel pumps of rocket engines for space vehicles where size and mass
must be kept low at all costs. Pearsall (1966) has shown that the supercavitating principle is most sui-
table for axial flow pumps of high specific speed and has suggested a design technique using methods
similar to those employed for conventional pumps.

Pearsall (1966) was one of the first to show that operating in the supercavitating regime was practic-
able for axial flow pumps, and he proposed a design technique to enable this mode of operation to be used.
A detailed description was later published (Pearsall, 1973), and the cavitation performance was claimed to
be much better than that of conventional pumps. Some further details are given in Chapter 7 of this book.

Cavitation Limits
In theory cavitation commences in a liquid when the static pressure is reduced to the vapour pressure
corresponding to the liquid’s temperature. However, in practice, the physical state of the liquid will
determine the pressure at which cavitation starts (Pearsall, 1972). Dissolved gases come out of solution
as the pressure is reduced, forming gas cavities at pressures in excess of the vapour pressure. Vapour
cavitation requires the presence of nuclei—submicroscopic gas bubbles or solid non-wetted particles—
in sufficient numbers. It is an interesting fact that in the absence of such nuclei a liquid can withstand
negative pressures (i.e., tensile stresses)! Perhaps the earliest demonstration of this phenomenon was
that performed by Osborne Reynolds (1882) before a learned society. He showed how a column of
mercury more than twice the height of the barometer could be (and was) supported by the internal
cohesion (stress) of the liquid. More recently Ryley (1980) devised a simple centrifugal apparatus
for students to test the tensile strength of both plain, untreated tap water in comparison with water
that had been filtered and then de-aerated by boiling. Young (1989) gives an extensive literature list
covering many aspects of cavitation including the tensile strength of liquids. At room temperature
the theoretical tensile strength of water is quoted as being as high as 1000 atm (100 MPa)! Special
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pre-treatment (i.e., rigorous filtration and pre-pressurization) of the liquid is required to obtain this
state. In general the liquids flowing through turbomachines will contain some dust and dissolved
gases and under these conditions negative pressure does not arise.

A useful parameter is the available suction head at entry to a pump or at exit from a turbine. This is
usually referred to as the net positive suction head, NPSH, defined as

Hs ¼ ðpo � pvÞ=ð ρgÞ, ð2:21Þ
where po and pv are the absolute stagnation and vapour pressures, respectively, at pump inlet or at tur-
bine outlet.

To take into account the effects of cavitation, the performance laws of a hydraulic turbomachine
should include the additional independent variable Hs. Ignoring the effects of Reynolds number, the
performance laws of a constant geometry hydraulic turbomachine are then dependent on two groups
of variable. Thus, the efficiency,

η ¼ f ðΦ, NssÞ, ð2:22Þ
where the suction specific speed Nss ¼ NQ1/2

⁄ (gHs)
3/4, determines the effect of cavitation, and Φ ¼

Q ⁄ (ND3), as before.
It is known from experiment that cavitation inception occurs for an almost constant value of Nss for

all pumps (and, separately, for all turbines) designed to resist cavitation. This is because the blade sec-
tions at the inlet to these pumps are broadly similar (likewise, the exit blade sections of turbines are
similar) and the shape of the low pressure passages influences the onset of cavitation.

Using the alternative definition of suction specific speed Ωss ¼ ΩQ1/2
⁄ (gHs)

1/2, where Ω is the rota-
tional speed in rad/s, Q is the volume flow in m3/s, and gHs is in m2/s2, it has been shown empirically
(Wislicenus, 1947) that

Ωss≃ 3:0 ðradÞ ð2:23aÞ
for pumps, and

Ωss ≃ 4:0 ðradÞ ð2:23bÞ
for turbines.

Pearsall (1967) describes a supercavitating pump with a cavitation performance much better than
that of conventional pumps. For this pump suction specific speeds Ωss up to 9.0 were readily obtained
and, it was claimed, even better values might be possible but at the cost of reduced head and efficiency.
It is likely that supercavitating pumps will be increasingly used in the search for higher speeds, smaller
sizes, and lower costs.
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PROBLEMS

1. A fan operating at 1750 rev/min at a volume flow rate of 4.25 m3/s develops a head of 153 mm
measured on a water-filled U-tube manometer. It is required to build a larger, geometrically simi-
lar fan that will deliver the same head at the same efficiency as the existing fan but at a speed of
1440 rev/min. Calculate the volume flow rate of the larger fan.

2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rev/min with an average
axial air velocity of 12.2 m/s. A quarter scale model has been built to obtain a check on the
design and the rotational speed of the model fan is 4200 rev/min. Determine the axial air velocity
of the model so that dynamical similarity with the full-scale fan is preserved. The effects of
Reynolds number change may be neglected. A sufficiently large pressure vessel becomes avail-
able in which the complete model can be placed and tested under conditions of complete simi-
larity. The viscosity of the air is independent of pressure and the temperature is maintained
constant. At what pressure must the model be tested?

3. The water pump used to generate the plot shown in Figure 2.2 has an impeller diameter of 56 mm.
When tested at a speed of 4500 rpm the head–volume flow rate characteristic produced can be
approximated by the equation

H ¼ 8:6� 5:6Q2,

where H is in meters and Q in dm3/s. Show that, provided viscous and cavitation effects are neg-
ligible, the characteristic of all geometrically similar pumps may be written in dimensionless
form as

ψ ¼ 4:78ð1� 1132Φ2Þ,
where ψ is the dimensionless head coefficient, gH ⁄N2D2, and Φ is the flow coefficient, Q ⁄ND3.
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4. A water turbine is to be designed to produce 27 MW when running at 93.7 rev/min under a head
of 16.5 m. A model turbine with an output of 37.5 kW is to be tested under dynamically similar
conditions with a head of 4.9 m. Calculate the model speed and scale ratio. Assuming a model
efficiency of 88%, estimate the volume flow rate through the model. It is estimated that the force
on the thrust bearing of the full-size machine will be 7.0 GN. For what thrust must the model
bearing be designed?

5. Derive the non-dimensional groups that are normally used in the testing of gas turbines and
compressors. A compressor has been designed for normal atmospheric conditions (101.3 kPa
and 15°C). To economise on the power required it is being tested with a throttle in the entry
duct to reduce the entry pressure. The characteristic curve for its normal design speed of 4000
rev/min is being obtained on a day when the ambient temperature is 20°C. At what speed should
the compressor be run? At the point on the characteristic curve at which the mass flow would
normally be 58 kg/s the entry pressure is 55 kPa. Calculate the actual rate of mass flow during
the test.

6. Describe, with the aid of sketches, the relationship between geometry and specific speed for
pumps.

a. A model centrifugal pump with an impeller diameter of 20 cm is designed to rotate at 1450
rpm and to deliver 20 dm3/s of fresh water against a pressure of 150 kPa. Determine the spe-
cific speed and diameter of the pump. How much power is needed to drive the pump if its
efficiency is 82%?

b. A prototype pump with an impeller diameter of 0.8 m is to be tested at 725 rpm under dyna-
mically similar conditions as the model. Determine the head of water the pump must over-
come, the volume flow rate, and the power needed to drive the pump.
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CHAPTER

Two-Dimensional Cascades 3
Let us first understand the facts and then we may seek the causes.

Aristotle

3.1 INTRODUCTION
The design and performance prediction of axial flow compressors and turbines has been based, in the
main, upon measurements of the flow-through two-dimensional cascades of blades. However, to an
increasing extent computational fluid dynamic (CFD) methods are now being used to simulate cascade
testing. The flow within a turbomachine is, in general, unsteady and three dimensional. For cascade
analysis, the flow across individual blade rows is treated as two dimensional and steady. This approach
is appropriate for many compressor and turbine designs and the derived flow characteristics obtained
from cascade tests have usually been found to be satisfactory, although laborious to collect.

Reviews of the many types of cascade tunnels, which includes low-speed, high-speed, intermittent
blowdown, suction tunnels, etc. are available in the literature, e.g. Sieverding, (1985), Baines et al.
(1982), and Hirsch (1993). The range of Mach numbers in axial flow turbomachines can be considered
to extend from M ¼ 0.1 to 2.5,

(i) low speed, operating in the range 20–60 m ⁄ s;
(ii) high speed, for the compressible flow range of testing.

A typical low speed, continuous running cascade tunnel is shown in Figure 3.1(a). This linear
cascade of blades comprises a number of identical blades, equally spaced and parallel to one another.
Figure 3.1(b) shows the test section of a cascade facility for transonic and moderate supersonic inlet
velocities. The upper wall is slotted and equipped for suction, allowing operation in the transonic
regime. The flexible section of the upper wall allows for a change of geometry so that a convergent–
divergent nozzle can be formed, allowing the flow to expand to supersonic speeds upstream of
the cascade.

It is most important that the flow across the central region of the cascade blades (where the flow
measurements are made) is a good approximation to two-dimensional flow and that the flow repeats
(i.e., is periodic) across several blade pitches. This effect could be achieved by employing a large num-
ber of long blades, but then an excessive amount of power would be required to operate the tunnel. With
a tunnel of more compact size, aerodynamic difficulties become apparent and arise from the tunnel wall

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
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boundary layers interacting with the blades. In particular, and as illustrated in Figure 3.2(a), the tunnel
wall boundary layer merges with the end blade boundary layer, and as a consequence, this blade usually
stalls, resulting in a non-uniform flow across the cascade.

In a compressor cascade the rapid increase in pressure across the blades causes a marked thickening
of the wall boundary layers and produces an effective contraction of the flow, as depicted in Figure 3.3.
A contraction coefficient, used as a measure of the boundary layer growth through the cascade, is
defined by ρ1c1cosα1 ⁄ ( ρ2c2 cosα2). Carter, Andrews, and Shaw (1950) quoted values of 0.9 for a
good tunnel dropping to 0.8 in normal high speed tunnels and even less in bad cases. These are values
for compressor cascades; with turbine cascades higher values can be expected, since the flow is accel-
erating and therefore the boundary layers will not be thickened.

Because of the contraction of the main through-flow, the theoretical pressure rise across a compres-
sor cascade, even allowing for losses, is never achieved. This will be evident since a contraction (in a
subsonic flow) accelerates the fluid, which is in conflict with the diffuser action of the cascade.

To counteract these effects it is customary (in Great Britain) to use at least seven blades in a
compressor cascade, each blade having a minimum aspect ratio (blade span–chord length) of 3. With
seven blades, suction is desirable in a compressor cascade but it is not usual in a turbine cascade.

(a)

(b)

Suction

Slotted upper
endwall

Flexible nozzle Flow

Slots for
sidewall boundary

layer suction

1
Slot

injection Flap
Throttle plane

Lower tailboard

Rake probe

Upper tailboard

Location of
static taps

Screens

Screen

Drive
motor

Single-stage fan
Diffuser

Settling
length

Contraction
section Suction

slot

Test
section

Line of
traverse

Cascade

Cascade
axis

�1

FIGURE 3.1

Compressor Cascade Wind Tunnels: (a) Conventional Low Speed, Continuous Running Cascade Tunnel
(Adapted from Carter, Andrews, and Shaw, 1950); (b) Transonic/Supersonic Cascade Tunnel (Adapted from
Sieverding, 1985)
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In the United States much lower aspect ratios are commonly employed in compressor cascade testing, the
technique being the almost complete removal of tunnel wall boundary layers from all four walls using a
combination of suction slots and perforated end walls to which suction is applied. Figure 3.2(b) illustrates
the effective application of suction to produce a more uniform flow-field.

For axial flow machines of high hub–tip radius ratios, radial velocities are negligible and the flow
may be described as two dimensional. The flow in the cascade is then likely to be a good model of the

End blade stalled
(a) Finite cascade without
      suction

(b) Finite cascade with
      suction applied

Wall boundary layer

FIGURE 3.2

(a) Flow Entering Cascade without Boundary Layer Control Causes End Blade Stalling: (b) Application of
Suction to Bottom Wall Boundary Layer Results in a More Uniform Flow without Blade Stall (Adapted from
Carter et al., 1950)
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FIGURE 3.3

Contraction of Streamlines Due to Boundary Layer Thickening (Adapted from Carter et al., 1950)
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flow in the machine. With lower hub–tip radius ratios, the blades of a turbomachine will normally have
an appreciable amount of twist along their length and a varying space–chord ratio. In such cases a
number of cascade test measurements can be applied to cover the design of the blade sections at a
number of radial locations. However, it should be emphasized that, in all cases, the two-dimensional
cascade is a simplified model of the flow within a turbomachine, which in reality can include various
three-dimensional flow features. For sections of a turbomachine where there are separated flow
regions, leakage flows or significant spanwise flows, the cascade model will not be accurate and
careful consideration of the three-dimensional effects is required. Further details of three-dimensional
flows in axial turbomachines are given in Chapter 6.

3.2 CASCADE GEOMETRY
A cascade blade profile can be conceived as a curved camber line upon which a profile thickness
distribution is symmetrically superimposed. In Figure 3.4 two blades of a compressor cascade are
shown together with the notation needed to describe the geometry. Several geometric parameters
that characterise the cascade are
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Compressor Cascade and Blade Notation
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(i) the stagger angle, ξ, the angle between the chord line and the reference direction;1

(ii) the space–chord ratio, s ⁄ l (in American practice the solidity, σ¼ l ⁄s, is more frequently used);
(iii) the camber angle, θ;
(iv) the blade inlet angle, α

0
1;

(v) the blade outlet angle, α
0
2.

Further parameters that are needed to describe the cascade blade shape include its camber line
shape, thickness distribution, the radii at the leading and trailing edges, and the maximum thickness
to chord ratio, tmax ⁄ l.

The camber angle, θ, is the change in angle of the camber line between the leading and trailing
edges that equals α

0
1� α

0
2 in the notation of Figure 3.4. For circular arc camber lines the stagger

angle is ξ ¼ 1
2ðα

0
1 þ α

0
2Þ. The change in angle of the flow is called the deflection, ε¼ α1� α2, and in

general this will be different to the camber angle due to flow incidence at the leading edge and
deviation at the trailing edge. The incidence is the difference between the inlet flow angle and the
blade inlet angle:

i¼ α1� α
0
1. (3.1)

The deviation is the difference between the exit flow angle and the blade exit angle:

δ¼ α2 � α
0
2. (3.2)

Compressor Blade Profiles
The modern approach in compressor design is to use blade profiles designed by the so-called
prescribed velocity distribution (PVD) method. In this approach, the designer will select a blade sur-
face velocity distribution and a computational method determines the aerofoil thickness and curvature
variation required to achieve the desired aerodynamics. Despite this, many blade designs are still in
use based upon geometrically prescribed profiles. The most commonly used geometric families are
the American National Advisory Committee for Aeronautics (NACA) 65 Series, the British C Series,
and the double circular arc (DCA) or biconvex blade.

The NACA 65 Series blades originated from the NACA aircraft wing aerofoil and were designed for
approximately uniform loading. Figure 3.5 compares the profiles of the most widely used blade sections
drawn at a maximum thickness to chord ratio of 20%, for the purpose of clarity. In fact the maximum t ⁄c
ratios of compressor blade sections are nowadays normally less than 10% and often a value of 5% is used
because of the superior high Mach number performance than can be achieved with thinner blades. The
NACA 65 Series has its maximum thickness at 40%, whereas the C Series is at 30% and the DCA Series
is at 50%. These differences have a marked effect on the velocity distributions measured around the
blades surfaces. Aerofoils with the maximum thickness near the leading edge and, consequently, with

1Throughout the whole of this book all fluid and blade angles are measured from this reference direction, which is a line
perpendicular to the cascade front (this is the axial direction, when the blades are in an annular arrangement).
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a well rounded leading edge have a wide operating range but a poorer high speed performance than blades
with a sharp leading edge and the maximum thickness point further back.

The exact details of the different profiles are very well documented, e.g., Mellor (1956), Cumpsty
(1989), Johnson and Bullock (1965), Aungier (2003), etc., and it is not thought useful or necessary to
reproduce these in this book.

The actual blade shape is defined by one of these profile shapes superimposed on a camber line.
This can be a simple circular arc although, according to Aungier (2003), a parabolic arc allows a more
flexible style of blade loading. The blade profile is laid out with the selected scaled thickness distribu-
tion plotted normal to the chosen camber line. Correlations for the performance of the different styles
of compressor aerofoil are discussed within section 3.5 on “Compressor cascade performance” later in
this chapter.

Turbine Blade Profiles
The shape of turbine blades is less critical than it is in a compressor cascade. However, the designer
still needs to exercise some care in the selection of blades to attain good efficiency with highly
loaded blade rows. Nowadays, the process of blade row geometry (blade shape, flow angles, and
space–chord ratio) is accomplished by computational methods but, ultimately, the designs still
need to be backed up by cascade tests. Figure 3.6 shows a photograph of a typical high speed turbine
cascade that is used to represent the aerofoils of a conventional low pressure turbine within an aero
engine. The blade profiles illustrate the high turning and the contraction of the passage flow area
within a turbine blade row.

During the early design phase of a turbine, or when cascade results are unavailable, one-dimensional
calculations and correlation methods can be used to estimate the blade row performance of turbine blade
rows. These are discussed within section 3.6 on “Turbine Cascades” later in this chapter.
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Thickness Distributions for Various Compressor Blade Profiles
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3.3 CASCADE FLOW CHARACTERISTICS
The fluid approaches the cascade from far upstream2 with velocity c1 at an angle α1 and leaves far
downstream of the cascade with velocity c2 at an angle α2 as shown in Figure 3.7. The aims of a
cascade test are to measure the deviation angle, δ, and to characterise the losses generated within
the flow as it is passes through the blade passages.

Deviation arises through inviscid and viscous effects. The flow mechanisms are different for com-
pressors and turbines and they will be described in detail later. Essentially though, the flow is unable to
follow the blade angle precisely, such that it is underturned and thus leaves the trailing edge at a
slightly different angle to the blade exit angle. Cascade losses arise from the growth of the boundary
layers on the suction and pressure surfaces of the blades. These boundary layers combine at the blade
trailing edge where they form the blade wake. As a result a local defect in stagnation pressure is cre-
ated. As the flow moves downstream the wake widens, as shown in Figure 3.7, and becomes less
intense. In addition, cascades operating at high Mach numbers have losses due to shock waves and
shock–boundary layer interaction at the blade surfaces.

The deviation and loss for a cascade are measured (or computed) at a range of conditions, because
as well as determining the design performance, it is important to check the tolerance to changes in the
inlet flow conditions, i.e., to show good off-design behaviour. Note that cascade tests can be made on
both rotor and stator blades. For rotors the absolute velocities in the cascade are equivalent to the rela-
tive velocities that would be present in the actual machine.

Streamtube Thickness Variation
When considering the flow through the blade passage of a compressor cascade it is often assumed that
the mean streamtube thickness remains constant. However, this may not be true because the rapid
increase in pressure of the flow through the blades can cause a marked thickening of the end wall

2Far upstream usually implies an indefinite distance of 1
2 to 1 chord upstream of the leading edge at a location where the

influence of the cascade static pressure field on the flow is negligible, similarly for far downstream.

FIGURE 3.6

A Cascade of High Speed Turbine Aerofoils (Courtesy of the Whittle Laboratory)
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boundary layers resulting in an effective contraction of the flow as already indicated in Figure 3.3. This
effect can be countered by the use of suction to remove the end wall boundary layers.

In general, for all flows, the conservation of mass flow rate per blade passage is

_m¼ ρ1c1H1s cos α1¼ρ2c2H2s cos α2, (3.3)

where Hs is the projected frontal area of the control volume, Aa. The parameter H1s cos α1 is the flow
area measured perpendicular to the inlet flow direction. This is the area perceived by the flow and is
therefore referred to as the true flow area. This is an important factor when compressible flow is
considered.

It is useful to define an axial velocity density ratio (AVDR); i.e.,

AVDR¼ð ρ2cx2Þ=ð ρ1cx1Þ¼H1=H2. (3.4)

Equation (3.4) can be used in relating flow properties at the different positions along the mean stream-
tube. Note that AVDR is the inverse of the contraction coefficient described in the introduction. In
compressors AVDR > 1 due to the thickening boundary layers, but in turbine cascades AVDR may
be less than 1 due to the possible thinning of the boundary layers in accelerating flow.
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FIGURE 3.7

The Flow through a Blade Cascade and the Formation of the Wakes (from Johnson and Bullock, 1965)
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Cascade Performance Parameters
For a known AVDR, as just defined, the primary aerodynamic input data for a cascade test are

(i) the inlet flow angle, α1;
(ii) the inlet Mach number, M1;
(iii) the blade Reynolds number, Re¼ ρ1c1l ⁄ μ, where l is the blade chord.

The data from cascade traverses are used to provide the following parameters for use in the design and
performance prediction of axial flow compressors and turbines:

(i) Exit flow angle, α2;
(ii) Stagnation pressure loss, Yp, or an energy loss coefficient, ζ.

The performance characteristics of a cascade of the cascade can therefore be expressed by the
following functional relationships:

α2 ¼ fnðM1, α1, ReÞ; Yp ¼ fnðM1, α1, ReÞ; or ζ ¼ fnðM1, α1, ReÞ.

The exit flow angle, α2, is a critical performance parameter because it determines the work transfer
within a turbomachinery stage. If we revisit the Euler work equation from Chapter 1, Δh0¼Δ(Ucθ), it is
clear that thework input or output froma turbomachinewill dependon the exit flowangles since cθ¼ c sin α.

The stagnation pressure loss coefficient is an overall measure of the aerodynamic losses through
the blade row. Generally, it is defined as

Yp ¼ loss of stagnation pressure� reference ðdynamicÞ pressure.

The aerodynamic losses in a cascade blade row translate into efficiency losses within a real turbo-
machine with the same blade shapes. The sources of losses can include

(i) boundary layers on the blades;
(ii) flow separation;
(iii) shock waves in the flow.

If no shock waves are present most of the “loss” due to irreversibility is confined to a narrow wake
downstream of the trailing edge as shown in Figure 3.7.

For compressors, the total pressure loss coefficient is based on reference inlet conditions, i.e.,

Yp ¼ð p01� p02Þ=ð p01� p1Þ. (3.5)

A Mollier diagram with the pressures and salient points for a compressor blade cascade is shown in
Figure 3.8(a).

For turbines, the total pressure loss coefficient is based on reference exit conditions, i.e.,

YP ¼ð p01� p02Þ=ð p01� p2Þ. (3.6)

In this case the reference dynamic pressure is the dynamic pressure at exit if the flow were isentropic.
Other variations of the turbine loss coefficient are used in the literature and Horlock (1966) gives a
comprehensive list of the definitions possible.
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An alternative loss parameter is sometimes used for turbines, called the energy loss coefficient,
ζ, which measures the lost kinetic energy relative to the isentropic exit kinetic energy:

ζ ¼ðc22is� c22Þ=c22is, where 0:5c22is ¼ h01� h2s. (3.7)

Figure 3.8(b) is a Mollier diagram3 indicating the pressures and enthalpies for the flow through a
turbine cascade blade row.

The two definitions of loss coefficient yield numerical values that are almost identical at low Mach
numbers but their values rapidly diverge as M2 increases with Yp > ζ.

A primary objective of a compressor blade is to produce a rise in static pressure as well as a deflec-
tion of the flow angle. A relevant performance parameter is therefore the static pressure rise coefficient.
For compressible flow this is usually defined as

Cp ¼ð p2� p1Þ=ð p01� p1Þ, (3.8a)

and for incompressible flow

Cp ¼ð p2 � p1Þ= 1
2
ρc21

� �
. (3.8b)

Flow measurements are made usually across either one or two blade pitches of the varying values of
stagnation and static pressures, p02 and p2, and the values of α2. Mass-averaged values of the perfor-
mance parameters are then derived from these flow measurements. For example, the mass flow rate is
given by

_m¼
Z s

0
ρcH cos αdy¼

Z s

0
ρcxHdy. (3.9)

h

s

p01 p02
p01 p02

p1

p2

p2

p1

22s

2s

01 02

1

h

ss1 s2 s1 s2

2

01 02

1

(a) Compressor cascade

1
2 c2

1

1
2 c2

1

1
2 c2

2
1
2 c2

2

(b) Turbine cascade

FIGURE 3.8

Mollier Diagrams for the Flow through (a) a Compressor Blade Cascade and (b) a Turbine Blade Cascade

3The enthalpy changes for the turbine and compressor cascades are drawn roughly equal only for expediency. In fact, the
turbine enthalpy drop will be three or four times larger than the enthalpy rise in the compressor blade row.
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A mean value of the air angle α2 can be found from integrals of tangential and axial momentum
across the pitch:

tan α2 ¼
Z s

0
ρcxcydy=

Z s

0
ρc2xdy. (3.10)

Finally, the mass-averaged stagnation pressure loss coefficient is

Yp ¼
Z s

0
ð p01 � p02Þ=ð p01 � p1Þ ρcxdy=

Z s

0
ρcxdy.

��
(3.11)

Figure 3.9 shows representative traverse results of Yp and α2 for a compressor cascade together with
the mass-averaged values of these parameters. The odd-looking “kinks” in the plot of α2 are caused by
the variation in the gradient of p02 across the wake and the response of a yaw meter used in measuring
flow direction. Further details of these effects are given in a paper by Dixon (1978).

Note: From this point onwards all parameters, e.g., α2, Yp, are taken as having been mass-averaged
according to the formulae just outlined.

Blade Surface Velocity Distributions
The details of the flow and velocity variations within the blade passages are not required to derive the
cascade performance metrics. However, blade surface velocity (and pressure) distributions are used to
show whether a blade achieves the velocity distributions intended in the design, and they are helpful for
understanding the way a cascade blade performs. In particular, the velocity variation on the blade suc-
tion surface can give an indication of imminent flow separation, which would lead to reduced turning
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and high loss. The relationship between surface velocity distribution and blade performance is discussed
further in the sections on turbine and compressor cascade performance.

3.4 ANALYSIS OF CASCADE FORCES
Lift and drag coefficients are frequently referred to in the general literature and in many later parts of
this book, especially with regard to low speed fans and wind turbines. However, with the advent of
much higher blade speeds in compressors and turbines, the effects of compressibility have become
complicated matters and their usage has almost vanished. Instead, it is now common practice just to
use flow deflection and non-dimensional total pressure loss in calculating performance, as described
previously. This section is included for completeness, but it should be remembered that the material
is applicable only to low speed turbomachines.

Consider a portion of a compressor blade cascade, as shown in Figure 3.10. The forces X and Y
exerted by a unit depth of blade upon the fluid are exactly equal and opposite to the forces exerted
by the fluid upon the blade. A control surface is drawn with end boundaries far upstream and down-
stream of the cascade and with side boundaries coinciding with the median stream lines.

The momentum equation is applied in the x and y directions assuming constant axial velocity,
cx gives the force components:

X¼ð p2 � p1Þs, (3.12)

Y ¼ ρscxðcy1 � cy2Þ (3.13a)

and

Y ¼ ρsc2xðtan α1 � tan α2Þ. (3.13b)
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Forces and Velocities in a Compressor Blade Cascade
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Equations (3.12) and (3.13) are valid only for incompressible flow with total pressure losses in the
cascade but with no change in axial velocity.

Lift and Drag Forces
A mean velocity cm is defined by

cm ¼ cx=cos αm, (3.14)

where αm is itself defined by

tan αm ¼ 1
2
ðtan α1 þ tan α2Þ. (3.15)

Considering unit depth of a cascade blade, a lift force L acts in a direction perpendicular to cm and a
drag force D in a direction parallel to cm. Figure 3.11 shows L and D as the reaction forces exerted by
the blade upon the fluid.

Experimental data are often presented in terms of lift and drag when, in fact, the data could be of
more use in the form of tangential force and total pressure loss. The lift and drag forces will now be
resolved in terms of the axial and tangential forces. Referring to Figure 3.12,

L¼X sin αm þ Y cos αm, (3.16)

D¼ Y sin αm �X cos αm. (3.17)

There is an immediate connection between the drag force D and the mass-averaged stagnation pressure
loss coefficient, Yp. If we consider a unit blade length, the force deficit acting over the span as a result
of the total pressure losses is sΔp0, where Δp0¼ p01� p02 for the cascade. The drag is the force com-
ponent shown in Figure 3.12, which is

D¼ sΔp0 cos αm. (3.18)

This is a result of fundamental importance, but it is strictly only applicable to incompressible flows.
Clearly, the drag force D ¼ 0 when Δ p0 ¼ 0. From eqn. (3.17) with eqn. (3.18), the drag force is

D¼ cos αmðYtan αm �XÞ¼ sΔp0 cos αm. (3.19)
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Lift and Drag Forces Exerted by a Unit Span of a Cascade Blade upon the Fluid
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Rearranging the above equation we obtain X,

X¼ Ytan αm � sΔp0. (3.20)

Substituting eqn. (3.20) into eqn. (3.16) we find:

L¼ sin αmðY tan αm � sΔp0Þ þ Ycos αm ¼ Ysec αm � sΔp0 sin αm. (3.21)

Substituting for Y using eqn. (3.13b), the lift becomes

L¼ ρsc2xðtan α1 � tan α2Þsec αm � sΔp0 sin αm. (3.22)

Lift and Drag Coefficients
These coefficients are normally defined in terms of incompressible flow parameters. The lift coefficient
is conventionally defined as

CL ¼ L=
1
2
ρc2ml

� �
, (3.23)

where cm¼ cx ⁄ cosαm¼ blade chord. The drag coefficient, similarly, is defined as

CD ¼D=
1
2
ρc2ml

� �
. (3.24a)

Using the following incompressible definition of stagnation pressure loss coefficient,

ζ ¼Δp0=
1
2
ρc2m

� �
, (3.24b)
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Axial and Tangential Forces Exerted by Unit Span of a Blade upon the Fluid
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and substituting for D with eqn. (3.18) then using eqn. (3.24b), we find

CD ¼ sΔp0cos α2
1=2 ρc2ml

¼ sζ1=2 ρc2mcos α2
1=2 ρc2ml

¼ s

l
ζ cos α2. (3.25)

Again, we can write CL in a more convenient form. From eqn. (3.22),

CL ¼ ½ ρsc2xðtan α1� tan α2Þsec αm � sΔp0 sin αm�= 1
2
ρc2ml

� �
.

Therefore

CL ¼ 2
s

l
cos αmðtan α1� tan α2Þ�CDtan αm. (3.26a)

Within the normal range of operation of the flow through a cascade, values of CD are very much less
than those of CL. Thus, the approximation is occasionally found to be useful, i.e.,

L

D
¼ CL

CD
¼ 2sec 2αm

ζ
ðtan α1� tan α2Þ. (3.26b)

Circulation and Lift
Note: The classical analysis of the lift developed by a single isolated aeofoil is based upon the ideal
case, when D¼ 0, and the flow is incompressible, i.e., ρ is constant.

The Kutta–Joukowski theorem states that the lift force L is

L¼Γρc, (3.27)

where c is the relative velocity between the aerofoil and the fluid at infinity and Γ is the circulation
about the aerofoil. This theorem is of fundamental importance in the development of the theory of aero-
foils (Glauert, 1959).

With the assumption that stagnation pressure losses are absent, the lift force per unit span of a blade
in cascade, using eqn. (3.22), becomes

L¼ ρsc2xðtan α1� tan α2Þsec αm ¼ ρscmðcy1� cy2Þ. (3.28)

Now the circulation is the contour integral of velocity around a closed curve. For the cascade blade the
circulation is

Γ¼ sðcy1� cy2Þ. (3.29)

Combining eqns. (3.28) and (3.29),

L¼Γρcm. (3.30)

As the spacing between the cascade blades is increased without limit (i.e., s → ∞), the inlet
and outlet velocities to the cascade, c1 and c2, becomes equal in magnitude and direction. Thus,
c1¼ c2¼ cm and eqn. (3.30) becomes the same as the theorem of Kutta-Joukowski stated previously
for an isolated aerofoil.
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3.5 COMPRESSOR CASCADE PERFORMANCE
Within compressor blades, the flow is moving from a low static pressure at inlet towards a higher static
pressure at exit. The fundamental difficulty in compressors is getting the flow to negotiate this pressure
rise without generating high loss or separating. The axial compressor designer must choose an appro-
priate level of blade loading, such that the flow can achieve the required pressure rise, whilst not over-
designing the compressor, such that there are too many blades. In addition, compressor blades are
required to turn the flow. The designer needs to choose a blade geometry that can achieve the correct
turning over a range of operating conditions.

This section describes the key phenomena present in compressor cascades that determine their over-
all performance. It also presents some research into the performance of compressors and the correla-
tions that these past studies have established.

Compressor Loss and Blade Loading
Many experimental investigations have confirmed that the efficient performance of compressor cas-
cade blades is limited by the growth and separation of the blade surface boundary layers. One of
the aims of cascade research is to establish the generalised loss characteristics and stall limits of con-
ventional blades. This task is made difficult because of the large number of factors that can influence
the growth of the blade surface boundary layers, viz. surface velocity distribution, blade Reynolds
number, inlet Mach number, free-stream turbulence and unsteadiness, and surface roughness. From
the analysis of experimental data several correlation methods have been evolved that enable the
first-order behaviour of the blade losses and limiting fluid deflection to be predicted with sufficient
accuracy for engineering purposes.

The correlations of Lieblein (1959) and Johnson and Bullock (1965), are based on his observa-
tions that a large amount of velocity diffusion on compressor blade surfaces tends to produce thick
boundary layers and eventual flow separation. Lieblein showed that in the region of minimum loss,
the wake thickness and consequently the loss in total pressure are related to the diffusion in velocity
on the suction surface of the blade in that region. He reasoned that the boundary layer on the suction
surface of conventional compressor blades contributes the largest share of the blade wake, and,
therefore, the suction-surface velocity distribution becomes the main factor in determining the
total pressure loss.

A typical velocity distribution is shown in Figure 3.13 derived from surface pressure measurements
on a compressor cascade blade operating in the region of minimum loss. From this it is clear that the
fall in velocity on the suction surface is high and much greater the overall change, i.e., cmax,s� c2�
c1� c2. Lieblein defined a term to quantify this diffusion on the suction surface, which he called the
local diffusion factor,

DFloc ¼ðcmax,s � c2Þ=cmax,s. (3.31)

Since the local diffusion factor was relatively hard to determine, Lieblein, Schwenk, and Broderick
(1953) developed the much used diffusion factor (DF) based on a theoretical surface velocity distribu-
tion similar to those actually measured on the NACA 65 Series and the British C4 Series cascades. This
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parameter requires knowledge of only the inlet and exit velocities from the blade and the pitch–chord
ratio and is therefore very useful for preliminary design purposes:

DF¼ð1� c2=c1Þ þ cθ1� cθ2
2c1

� �
s

l
. (3.32)

The first term on the right-hand-side, 1� c2 ⁄ c1, represents the mean deceleration of the flow. The
second term, (cθ1� cθ2) ⁄ 2c1, represents the flow turning. The pitch–chord ratio is important as this deter-
mines how well the flow is guided by the blades. A low value implies lower pressure gradients across the
blade passages required to turn the flow and, hence, less diffusion. Lieblein showed that the loss in a
blade row increases rapidly as the flow starts to separate when the diffusion factor exceeds 0.6. Typically,
a well-designed blade with moderate loading will operate with a diffusion factor around 0.45. Although it
was developed using just a small range of compressor blade designs operating at a minimum loss con-
dition, the diffusion factor is widely applied to a range of compressor designs, both compressible and
incompressible, for preliminary design purposes. For constant axial velocity and incompressible flow
the diffusion factor can be written as

DF¼ 1� cos α1
cos α2

� �
þ s

l

cos α1
2

tan α1 � tan α2ð Þ. (3.33)

Thus, once the flow angles are fixed, a required level of diffusion factor can be used to set the pitch–chord
ratio.

Lieblein (1960) also introduced a diffusion ratio expressed as the ratio of maximum suction-surface
velocity to outlet velocity, cmax,s ⁄c2. Lieblein found a correlation between the diffusion ratio cmax,s ⁄c2
and the wake momentum thickness to chord ratio, θ2 ⁄ l, at the reference incidence (mid-point of working
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Typical Velocity Distribution on a Compressor Cascade Blade (at or near Minimum Loss Condition)
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range) for American NACA 65-(A10) and British C4 circular arc blades. For incompressible flow, the
wake momentum thickness, with the parameters of the flow model in Figure 3.14 is defined as

θ2 ¼
Z s=2

�s=2
ðc=cmaxÞð1� c=cmaxÞdy. (3.34)

Figure 3.14 shows the full blade wake in the exit plane of the cascade. Using Newton’s second law
of motion, we now equate the total loss in momentum due to friction with the drag force. This, of
course, includes the boundary layers on both blade surfaces. Using eqn. (3.18), we get

D¼ sΔp0cos α2 ¼ θ2ρc
2
2, (3.35)

where θ2¼ θsþ θp, i.e., the sum of the momentum thicknesses on the pressure and suction surfaces at
the trailing edge plane.

From the definition of drag coefficient, eqn. (3.24a) and eqn.(3.35) it can be shown that

CD ¼ ζ ðs=lÞcos α2 ¼ 2ðθ2=lÞcos 2αm=cos 2α2. (3.36)

This equation provides a useful link between the drag coefficient and the wake momentum
thickness.

The Lieblein correlation of momentum thickness to chord ratio is plotted against the diffusion ratio,
cmax,s ⁄c2, with the data points removed for clarity, is shown in Figure 3.15. This curve represents the
equation

θ2
l
¼ 0:004= 1� 1:17 ln

cmax,s

c2

� �� �
. (3.37)

It will be noticed that for the limiting case, (θ2 ⁄1) → ∞, the corresponding upper limit for the diffusion
ratio cmax,s ⁄c2 is 2.35. The practical limit of efficient operation corresponds to a diffusion ratio of
between 1.9 and 2.0.

The diffusion ratio requires a knowledge of suction-surface velocities. As these data may be
unavailable an alternative method was developed using an equivalent diffusion ratio, DReq,
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FIGURE 3.14

Blade Wake Downstream of the Exit of a Compressor Blade Cascade
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approximately equal to cmax,s ⁄c2, which can be easily calculated from the inlet and outlet conditions of
the cascade. First of all, an empirical correlation was established by Lieblein (1959) between a circula-
tion parameter defined by

f ðΓÞ¼Γ cos α1=ðlc1Þ and cmax,s=c1 (3.38)

at the reference incidence, where the ideal circulation, Γ¼ s(cy1� cy2), is obtained from eqn. (3.29).
The correlation then is simply the linear relation

cmax,s=c1 ¼ 1:12þ 0:61f ðΓÞ, (3.39)

which applies to both NACA 65-(A10) and C4 circular arc blades. Hence, the equivalent diffusion ratio,
after substituting for Γ and simplifying, is

DReq ¼ cmax,s

c2
¼ cos α2

cos α1
1:12þ 0:61

s

l

� �
cos 2 α1 tan α1� tan α2ð Þ

h i
. (3.40)

At incidence angles greater than reference incidence, Lieblein found that the following correlation was
adequate:

DReq ¼ cos α2
cos α1

1:12þ kði� irefÞ1:43 þ 0:61
s

l

� �
cos 2 α1 tan α1� tan α2ð Þ

h i
. (3.41)

Note: The reference incidence was loosely defined as the mid-point of the working range.
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Mean Variation of Wake Momentum Thickness–Chord Ratio with Suction-Surface Diffusion Ratio at
Reference Incidence Condition for NACA 65-(C10A10)10 Blades and British C.4 Circular-Arc Blades (Adapted
from Lieblein, 1959)
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Example 3.1
A low speed compressor cascade is to be tested with a flow inlet angle, α1¼ 55°, and a flow exit angle, α2¼ 30°.
The expected design value of the diffusion ratio, cmax,s ⁄ c2, is to be 1.95. Using the preceding equations, determine
values for CD and CL. Also find a safe value for the pitch–chord ratio if the maximum value of the diffusion factor
is assumed to be 0.6.

Solution
From eqn. (3.37), θ2 ⁄ l ¼ 0.004 ⁄ [1� 1.17 ln(1.95)] ¼ 0.0183.

From eqn. (3.36), CD¼ 2(θ2 ⁄ l)cos
2αm/cos

2α2, where tanαm¼ 1
2
(tanα1þ tanα2)¼ 1.00275; therefore,

αm¼ 45.08°. Therefore,

CD ¼ 2� 0:0183� cos 245:08=cos 230 ¼ 0:02433.

From eqn. (3.26a), CL¼ 2s ⁄ l cos αm(tan α1� tan α2)�CDtan αm; therefore,

CL ¼ 2� 1:075� cos 45:08�ðtan 55� tan 30Þ� 0:2433� tan 45:08¼ 1:048.

Using eqn. (3.33) with the diffusion factor set at 0.6, the maximum allowable pitch–chord ratio is

s

l
≤

2 cos α1=cos α2 � 0:8
cos α1ðtan α1 � tan α2Þ ¼

2� 0:5736=0:866� 0:8
0:5736�ð1:4281� 0:5774Þ ¼ 1:075.

Nominal Deflection
In the early history of gas turbine development Howell (1942: 1945a: 1945b), Constant (1945), and
others developed a simple approach for determining the stall limits of compressor cascade blades.
Howell defined a nominal fluid deflection ε*¼ α1� α2 that corresponded to 80% of the stalling (or
maximum) deflection of the flow through the cascade. The nominal deflections of the flow are, primar-
ily, a function of the space–chord ratio s ⁄ l, the nominal fluid outlet angle α	2, and the Reynolds number
Re, i.e.,

ε	 ¼ fðs=l, α	2, ReÞ. (3.42)

It is important to note that the correlation (which is really a correlation of stalling deflection, εs¼ 1.25ε*)
is virtually independent of blade camber θ in the normal range of choice of this parameter (20°< θ<
40°). Figure 3.16 shows the variation of ε* against α	2 for several space–chord ratios. The dependence
on Reynolds number based on blade chord is small for Re> 3� 105.

Fluid Deviation
The flow leaving a compressor blade does not follow the blade camber line at the trailing edge. This
deviation arises partly because the flow is diffusing within the blade passages. This means that the
streamlines are diverging and therefore the flow is not moving in a single direction. This effect is exa-
cerbated by the spacing of the blades because the flow is guided less by the blades when they are
further apart. The deviation is further increased by viscous effects since any boundary layer growth
on the blade surfaces will generate a blockage that modifies the effective blade shape.
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Howell derived an empirical rule to relate the nominal deviation δ* occurring at the nominal inci-
dence angle i* with the blade geometry:

δ	 ¼mθðs=lÞn, (3.43)

where n ≈ 0.5 for compressor cascades and n ≈ 1 for compressor inlet guide vanes (these are actually
turbine blades as they accelerate the flow). The value of m depends upon the shape of the camber line
and the blade setting. Howell’s rule demonstrates that the deviation is found to increase with pitch–
chord ratio and blade camber. For a compressor cascade,

m¼ 0.23ð2a=lÞ2 þ α	2=500, (3.44)

where the maximum camber of the blade is at distance a from the leading edge.

Example 3.2
A compressor cascade has a space–chord ratio of unity and blade inlet and outlet angles of 50° and 20°, respec-
tively. If the blade camber line is a circular arc (i.e., a ⁄ l¼ 50%) and the cascade is designed to operate at the
Howell nominal condition. Determine the fluid deflection, incidence, and ideal lift coefficient at the design
point.

Solution
The camber, θ¼ α

0
1� α

0
2 ¼ 30°. As a first approximation put α	2 ¼ 20° in eqn. (3.44) to give m¼ 0.27 and, using

eqn. (3.43), δ*¼ 0.27 � 30¼ 8.1°. As a better approximation put α	2 ¼ 28:1° in eqn. (3.44) giving m¼ 0.2862 and
δ*¼ 8.6°. Thus, α	2 ¼ 28:6° is sufficiently accurate.
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From Figure 3.16 with s ⁄ l¼ 1.0 and α	2 ¼ 28:6°, find the value ε	 ¼ α	1 � α	2 ¼ 21°. Hence, α	1 ¼ 49:6° and the
nominal incidence is, therefore, i	 ¼ α	1 � α

0
1 ¼�0:4°.

The ideal lift coefficient is found by setting CD ¼ 0 in eqn. (3.26a),

CL ¼ 2ðs=lÞ cos αmðtan α1� tan α2Þ.

Putting α1 ¼ α	1 and α2 ¼ α	2 and noting that tan α	m ¼ 1
2
ðtan α	1 þ tan α	2Þ we obtain α	m ¼ 40:75°; therefore,

C	
L ¼ 2ð1:172� 0:545Þ� 0:758 ≈ 0:95.

Incidence Effects
Figure 3.17 shows a schematic of the flow around a compressor blade for different incidence condi-
tions as well as the corresponding surface pressure distributions for a compressor cascade. At the
design point of a compressor blade the inlet flow angle is almost parallel to the camber line at the lead-
ing edge (i.e., the inlet blade angle). Hence, there is close to zero incidence and the surface pressure
distribution for the blade should be smooth and continuous. In this case any deflection, or turning, of
the flow is achieved via the camber of the blades. As the incidence is increased, the flow impinges on
the blade pressure surface, and the flow on the suction surface must rapidly accelerate around the lead-
ing edge then decelerate to a speed comparable with the mainstream flow. This leads to very high local
diffusion close to the front of the blade and sometimes what is referred to as a leading edge spike on the
blade suction surface. The diffusion can cause boundary layer transition and, thus, higher blade losses,
and at very high incidences the flow will separate, leading to stall. With positive incidence, the blade
loading is higher and the flow deflection increased. Some of the turning can be thought of as being due
to the blade camber, and some due to the incidence. At negative incidence, the flow accelerates around
the leading edge onto the pressure surface. The pressure distributions on the front of the suction and
pressure surfaces swap and the diffusion on the pressure surface is increased. The flow deflection is
reduced and the loading is low. At very high values of negative incidence, the diffusion becomes
so high that the flow can separate.

The tolerance of the compressor blades to incidence variations is critical to enable stable and
efficient off-design operation of a compressor. When a compressor operates at mass flow rates or rota-
tional speeds that are away from the design point, the blades will be subject to incidence variations, as
detailed in Chapter 5. Typically, a compressor blade needs to tolerate at least 
5° variation of inci-
dence without stalling, although the exact requirements will depend on the application. As shown
later, the variations in incidence that can be tolerated by a compressor aerofoil reduce as the inlet
Mach number increases.

Blade Inlet Mach Number
The peak Mach number on the surface of a conventional compressor blade is significantly higher than
the inlet Mach number. Once the inlet Mach number exceeds about 0.7, the flow on the blade will
become transonic, leading to performance deterioration. Figure 3.18 shows the surface Mach number

74 CHAPTER 3 Two-Dimensional Cascades



distribution around a compressor aerofoil at low incidence for different levels of inlet Mach number.
Once the local Mach number on the suction surface exceeds 1, additional losses arise due to the presence
of shock waves. In addition, the rapid diffusion across the shock waves leads to thicker boundary layers
and, thus, greater viscous losses. The higher diffusion on the suction surface at high inlet Mach number
means that the blade boundary layers are likely to separate at modest levels of positive incidence.
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Effect of Incidence on the Surface Mach Number Distributions Around a Compressor Blade Cascade
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In practice, the effects of high inlet Mach numbers are alleviated by using very thin blades and low
camber. These features help to make the peak suction surface Mach number not much higher than the
inlet Mach number. As shown in Chapter 5, such blades can be used for highly efficient transonic com-
pressor rotors with relative inlet Mach numbers up to 1.5.

Figure 3.19 is a diagram showing the mean-line flow through a high speed compressor cascade. For
any cascade, given the inlet angle, α1, the inlet Mach number, M1, and the exit Mach number, M2, it is
possible to calculate the exit angle, and thus the deviation, if the cascade loss coefficient, Yp, is
known. This is done using the one-dimensional compressible flow relations for the flow through the cas-
cade. The ratio of stagnation to static pressure and the non-dimensional mass flow are both functions of
inlet Mach number:

p01
p1

¼ 1þ γ� 1
2

M2
1

� �γ=ðγ�1Þ
, (from eqn. 1.35)

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CPT01

p
sH1cos α1p01

¼QðM1Þ. (from eqn. 1.38)

From the definition of loss coefficient, Yp (eqn. 3.5), the cascade stagnation pressure ratio can
be found:

p02
p01

¼ 1� Yp 1� p1
p01

� �
. (3.45)
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For a stationary blade row, T01¼ T02. Thus, the non-dimensional mass flow at exit from the cascade
can be written:

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CPT02

p
H2s cos α2p02

¼QðM2Þ¼QðM1Þ�H1

H2
� p01
p02

� cos α1
cos α2

.

Assuming the AVDR of the cascade is equal to 1, then H1 ⁄H2¼ 1, and the preceding can be written in
the following form to give the flow exit angle:

cos α2 ¼ QðM1Þ
QðM2Þ�

p01
p02

� cos α1. (3.46)

Combining eqns. (3.45) and (3.46) gives the exit angle in terms of the inlet conditions, the loss coeffi-
cient, and the exit Mach number. Equally, the preceding expression can be used to find the exit Mach
number or the loss coefficient in terms of the other quantities.

The effect of negative incidence at a high inlet Mach number can be demonstrated using an analysis
similar to that presented previoiusly to find when a compressor cascade will choke. Consider a com-
pressor cascade with a minimum flow area, A*, as pictured in Figure 3.20. This minimum flow area is
usually referred to as the throat of the blade passage. Applying conservation of mass between the inlet
and the throat,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CPT01

p
H1scos α1p01

¼QðM1Þ¼ _m
ffiffiffiffiffiffiffiffiffiffiffiffi
CPT01

p
A	p	0

p	0
p01

� A	

H1scos α1
. (3.47)

When the flow chokes in the blade passage, the Mach number at the throat is unity and, therefore,

_m
ffiffiffiffiffiffiffiffiffiffiffiffi
CPT01

p
A	p	0

¼Qð1Þ¼ constant.

In the best case, there will be little loss in stagnation pressure between inlet and the throat and
p	0 ¼ p01. In this case eqn. (3.47) can be simplified to give the inlet flow angle at which choking
occurs:

cos α1 ¼ Qð1Þ
QðM1Þ

A	

H1s
. (3.48)
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Mean-Line Analysis of Compressible Flow through a Compressor Cascade
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All the terms on the right-hand side of eqn. (3.48) are constant except Q(M1). This equation shows that,
as the inlet Mach number increases, the cosine of the inlet angle when choking occurs decreases (and
thus the actual angle increases). Therefore, the amount of negative incidence possible before choking
occurs is reduced as the inlet Mach number increases. To avoid choking either the inlet angle must be
increased or the inlet Mach number reduced.

To summarise, Figure 3.21 shows typical variations in loss coefficient and exit angle for a com-
pressor cascade as a function of the inlet incidence angle and inlet Mach number. The exact form of
these plots will depend on the detailed cascade geometry, but the trends shown are seen in all com-
pressor blades. For a given inlet Mach number there is a range of incidence for which the cascade is
low loss and low deviation. Outside this range, both the loss and deviation rise rapidly. The variation
of a compressor blade row loss coefficient with incidence is often referred to as a loss bucket or a
loss loop. The results plotted in Figure 3.21 clearly show that as Mach number increases the toler-
ance of the cascade to incidence is reduced. The reduced tolerance to positive incidence occurs due
to the greater suction-surface diffusion present at higher inlet Mach numbers. The reduced tolerance
to negative incidence occurs due to choking of the cascade blade passage. It is only at low inlet
Mach numbers that diffusion on the pressure surface can limit the performance at high levels of
negative incidence.

3.6 TURBINE CASCADES
There is a fundamental difference between the flow in turbine cascades and that in compressor
cascades that needs emphasising. In turbine blade rows the pressure is falling and the flow is
accelerating. This means that

(i) the boundary layers are much more stable and remain attached to the blades;
(ii) the blades can accept a much higher loading without the danger of boundary layer separation;
(iii) the flow deflection in a turbine blade row can be greater than 120°;
(iv) the ratio of exit to inlet velocity, c2 ⁄c1, can be between 2 and 4;
(v) the diffusion factor on the suction surface, DF, is typically only about 0.15, so there is no danger

of boundary layer separation except at very low values of Reynolds number.
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Choking of a Compressor Cascade at Negative Incidence

78 CHAPTER 3 Two-Dimensional Cascades



Figure 3.22 shows a sketch of the flow through an axial flow turbine cascade with the corresponding
surface velocity distribution. This illustrates many of the features described previously and it is worth
noting the rapid reduction in flow area through the cascade, which is what generates the high accelera-
tion along the stream tube. The high acceleration and low levels of diffusion throughout the flow-field
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lead to turbine cascades having a wide range of low loss performance. This is in contrast to compressor
cascades, which have a rather narrow range. This is also the basic reason why turbines can have a much
higher stage loading than compressors and why there are far fewer turbine stages than compressor
stages in a turbojet engine.

Turbine Loss Correlations
A number of approaches have been made to predict the total pressure loss coefficients and flow deviation
angles to the geometry of the turbine cascade and the incoming flow. A detailed account of the different
methods and comparison of results found have been given by Horlock (1966), Dunham and Came
(1970), Kacker and Okapuu (1981), Craig and Cox (1971), and others. In the following account it
seems reasonable to limit the discussion to just two of the more prominent methods, namely,

(i) the correlation of Ainley and Mathieson (1951);
(ii) the correlation of Soderberg (1949).

Before embarking on the details of these correlations it seems only fair to mention that so far as
their accuracy goes that Soderberg’s method is adequate for making rapid estimates of turbine efficiency
(which is dealt with in Chapter 4) and, according to Horlock (1966), can give efficiencies within 
3%.
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Flow through an Axial Flow Turbine Cascade
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Correlation of Ainley and Mathieson
Ainley and Mathieson (1951) (A&M) reported a way of estimating the performance of an axial flow
turbine, and it should be noted, the method has been widely used ever since. In essence the total pres-
sure loss and gas efflux angle for each row of a turbine stage is determined at a single reference dia-
meter and under a wide range of inlet conditions. This reference diameter was taken as the arithmetic
mean of the rotor and stator rows’ inner and outer diameters. Dunham and Came (1970) gathered
together details of several improvements to the method, which gave better performance prediction
for small turbines than did the original method. When the blading is competently designed the revised
method has been found to give reliable predictions of efficiency to within 
2% over a wide range of
designs, sizes, and operating conditions.

According to A&M’s method the total pressure loss is composed of three parts:

(i) a profile loss;
(ii) a secondary loss;
(iii) a tip clearance loss

and these are needed to determine the overall performance of a turbine stage.
In the following analysis we will be concerned only with the profile loss; the other two components

of loss, which require fairly extensive descriptions, are considered in Chapter 4.
The profile loss coefficient, defined by eqn. (3.6), is determined initially at zero incidence (i ¼ 0).

At any other incidence the profile loss ratio Yp ⁄ Yp(i=0) is assumed to be defined by a unique function of
the incidence ratio i ⁄ is as shown in Figure 3.23, where is is the stalling incidence. Again, the stalling
incidence is defined as the point where the profile loss ratio Yp ⁄Yp(i¼0)¼ 2.0.

Next,A&Mcorrelated the profile losses of turbine blade rows against space–chord ratio s ⁄ l, fluid outlet
angle α2, blade maximum thickness–chord ratio tmax ⁄ l, and blade inlet angle. The variation of Yp(i=0)
against the space–chord ratio s ⁄ l is shown in Figure 3.24(a) for nozzle blade rows and in Figure 3.24(b)
for impulse blading, both at various flow outlet angles.
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Variation of Profile Loss with Incidence for Typical Turbine Blading (Adapted from Ainley and Mathieson, 1951)
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For the sort of blading normally employed (intermediate between nozzle blades and impulse blades)
the zero incidence total pressure loss coefficient devised by A&M is

Ypði¼ 0Þ ¼ Ypðα1¼ 0Þ þ α1
α2

� �2

Ypðα1¼ α2Þ�Ypðα1¼ 0Þ
	 
( )

tmax=l

0:2

� �α1=α2

. (3.49)

All the values of Yp are taken at the same space–chord ratio and outlet flow angle. If rotor blades are
being considered, put β2 for α1 and β3 for α2. Equation (3.49) includes a correction for the effect of the
thickness–chord ratio and is valid in the range 0.15 � tmax ⁄ l � 0.25. If the actual blade has a tmax ⁄ l
greater or less than the limits quoted, A&M recommended that the loss should be taken as equal to
a blade having tmax ⁄ l either 0.25 or 0.15.
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A feature of the losses given in Figure 3.24 is that, compared with the impulse blades, the nozzle
blades have a much lower total pressure loss coefficient. This observation confirms the results shown
in Figure 3.25, that flows in which the mean pressure is falling always have a lower loss coefficient
than flows in which the mean pressure is constant or increasing.

Reynolds Number Correction
A&M obtained their data for a mean Reynolds number of 2� 105 based on the mean chord and exit
flow conditions from the turbine state. They recommended that, for lower Reynolds numbers, down to
5� 104, a correction be made to stage efficiency according to the rough rule

ð1� ηttÞµRe�1=5.

Soderberg’s Correlation
A relatively simple method of estimating turbine blade row losses is to assemble the performance
data on the overall efficiencies from a wide variety of turbines and from this determine the indivi-
dual blade row stagnation pressure losses. Such a system was developed by Soderberg (1949) from a
large number of tests performed on steam turbines and on cascades and extended to fit data obtained
from small turbines with very low aspect ratio blading (small height–chord). Soderberg’s method
was intended only for turbines conforming to the standards of “good design,” discussed later.

Horlock (1960) critically reviewed several widely used methods of obtaining design data for turbines.
His paper confirms the claim made for Soderberg’s correlation that, although based on relatively few
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parameters, its accuracy is comparable with the best of the other methods. Soderberg found that with the
optimum space–chord ratio (using Zweifel’s criterion), turbine blade losses could be correlated with
space–chord ratio, blade aspect ratio, blade thickness–chord ratio and Reynolds number.

For turbine blade rows operating at this load coefficient, with a Reynolds number of 105 and aspect
ratioH ⁄b¼ blade height/axial chord of 3, the “nominal” loss coefficient, ζ* (defined by eqn. 3.7) is a sim-
ple function of the fluid deflection angle, ε¼ α1þ α2, for a given thickness–chord ratio (tmax ⁄ l):

ζ 	 ¼ 0.04þ 0.06
ε

100

� �2
, (3.50)

where ε is in degrees. Values of ζ * are drawn in Figure 3.26 as a function of deflection angle ε for several
ratios of tmax ⁄ l.

This expression fits the Soderberg curve (for tmax ⁄ l ¼ 0.2) quite well with ε� 120° but is less accu-
rate at higher deflections. For turbine rows operating at zero incidence, which is the basis of Soder-
berg’s correlation, the fluid deflection is little different from the blading deflection since, for turbine
cascades, deviations are usually small. If the aspect ratio H ⁄b is other than 3, a correction to the nom-
inal loss coefficient ζ * is made as follows: for nozzle rows,

1þ ζ 1 ¼ð1þ ζ 	Þð0:993þ 0:021b=HÞ, (3.51a)

and for rotors,

1þ ζ 1 ¼ð1þ ζ 	Þð0:975þ 0:075b=HÞ, (3.51b)

where ζ1 is the pressure loss coefficient at a Reynolds number of 105.
A further correction can be made if the Reynolds number is different from 105. As used in this sec-

tion, the Reynolds number is based upon exit velocity c2 and the hydraulic diameter Dh at the throat
section, defined by

Re¼ ρ2c2Dh=μ,
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FIGURE 3.26

Soderberg’s Correlation of the Turbine Blade Loss Coefficient with Fluid Deflection (Adapted from Horlock, 1960)
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where for a cascade geometry,Dh ¼ 2sH cos α2 ⁄ (s cos α2þH). (Note: Mean diameter¼ 4� flow area ÷
perimeter.)

The Reynolds number correction is

ζ 2 ¼
105

Re

� �1=4

ζ 1. (3.52)

Soderberg’s method of loss prediction gives turbine efficiencies with an error of within 
3% over a
wide range of Reynolds numbers and aspect ratios when additional corrections are included to allow
for tip leakage and disc friction. The method was shown to be most useful by Lewis (1996) when
applied to the performance analysis of axial-flow turbines and was also used by Sayers (1990).

The Zweifel Criterion
For turbine cascade blades there is an optimum space–chord ratio that gives a minimum overall loss.
Figure 3.27 illustrates the way the velocity distribution varies around the surface of a turbine blade
in a cascade at three values of space–chord ratio. If the spacing between the blades is made small,
the fluid receives the maximum amount of guidance from the blades, but the friction losses will be
large. On the other hand, with the same blades spaced well apart, friction losses are small but,
because of poor fluid guidance, the losses resulting from flow separation are high. These considera-
tions led Zweifel (1945) to formulate his criterion for the optimum space–chord ratio of turbine
blades having large deflection angles. Essentially, Zweifel’s criterion is simply that the ratio of
an “actual” to an “ideal” tangential blade loading has an approximately constant value for minimum
losses. The tangential blade loads are obtained from the real and ideal pressure distributions on both
blade surfaces, as described here.

Figure 3.28 indicates a typical pressure distribution around one blade in an incompressible turbine
cascade, curves P and S corresponding to the pressure (or concave) side and suction (convex) side,
respectively. The pressures are projected parallel to the cascade front so that the area enclosed between
the curves S and P represents the actual tangential blade load:

Y ¼ _mðcy1 þ cy2Þ. (3.53)

c/c2

1.0

1.2

Axial distance

Low s /b

High s /b Optimum blade
spacing  

FIGURE 3.27

Optimum Space–Chord Ratio for a Turbine Cascade
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To give some idea of blade load capacity, the real pressure distribution is compared with an ideal
pressure distribution giving a maximum load Yid without risk of fluid separation on the S surface. The
conditions for this ideal load are fulfilled by p01 acting over the whole P surface and p2 acting over the
whole S surface. With this pressure distribution the ideal tangential load is

Yid ¼ðp01� p2ÞbH, (3.54)

where b is the axial chord of the blade. For incompressible, loss-free flow, ðp01� p2Þ¼ 1
2 ρc

2
2. If the

axial velocity is also constant (i.e., AVDR¼ 1) then the mass flow, _m¼ ρHscx, and the ratio of actual
to ideal blade force is given by

Ζ ¼ Y=Yid ¼ _mðcy1 þ cy2Þ
ð p01� p2ÞbH ¼ ρHsc2xðtan α1 þ tan α2Þ

1=2ρc2xsec
2α2bH

.

This can be simplified to give

Ζ¼ Y=Yid ¼ 2ðs=bÞcos 2α2ðtan α1 þ tan α2Þ. (3.55)

Zweifel found from a number of experiments on turbine cascades that at low Mach numbers, for
minimum losses the value of Ζ was approximately 0.8. Thus, for specified inlet and outlet angles
the optimum space–axial chord ratio is

s=b¼ 0.4=½cos 2α2ðtan α1 þ tan α2Þ�. (3.56)

This shows that highly turning turbine blades, i.e., large (tan α1þ tan α2), need to have a low pitch–
axial chord ratio, whereas highly accelerating blades that have a high exit angle, i.e., small cos2 α2, can
be spaced further apart.

According to Horlock (1966), Zweifel’s criterion accurately predicts optimum space–chord ratio for
the data of Ainley and Mathieson only for outlet angles of 60–70°. At other outlet angles the criterion
gives a less accurate estimate of optimum space–axial chord ratio, a conclusion supported by Aungier
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FIGURE 3.28

Typical Pressure Distribution around a Low Speed Turbine Cascade Blade
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(2003). For modern blade designs, higher values of Z are common, particularly in the low pressure
turbines of jet engines, where there is a need to minimize the overall turbine weight and thus reduce
the number of aerofoils required. Japikse and Baines (1994) suggest that the value of Zweifel’s coeffi-
cient used may be in excess of 1 in such cases.

For compressible flow turbine cascades, the assumptions used in deriving eqn. (3.55) are no longer
valid and the compressible value of Z must be derived from eqns. (3.53) and (3.54), i.e.,

Ζ ¼ Y=Yid ¼ _mðcy1 þ cy2Þ
ð p01� p2ÞbH .

The optimum value of Z, as just defined, is found to decrease as the exit Mach number rises. This
reduction occurs because the ideal dynamic pressure ( p01� p2) increases rapidly with Mach number
leading to a larger ideal blade force. For high Mach numbers the coefficient can be evaluated using
compressible flow relations as demonstrated in Example 3.4.

Example 3.4
A two-dimensional linear turbine cascade operates in air with an inlet flow angle of 22° and an inlet Mach number
of 0.3. The exit Mach number is measured as 0.93 with an exit flow angle of 61.4°. Calculate the ratio of inlet
stagnation pressure to exit static pressure and determine the cascade stagnation pressure loss coefficient. If, for
this operating condition, the Zweifel loading coefficient required for the cascade is 0.6, determine the pitch to
axial chord ratio for the blades.

Solution
Applying continuity from inlet to exit of the cascade,

_m
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Hscos α1p01

¼QðM1Þ¼
_m
ffiffiffiffiffiffiffiffiffiffiffi
cpT02

p
Hscos α2p02

� cos α2
cos α1

� p02
p01

.

For a cascade, the stagnation temperature is constant, and thus, T02 ¼ T01. Rearranging the preceding equation
allows the stagnation pressure ratio to be found by using compressible flow tables:

p02
p01

¼ QðM1Þ
QðM2Þ�

cos α1
cos α2

¼ 0:6295
1:2756

� cos ð22°Þ
cos ð61:4°Þ ¼ 0:9559.

The ratio of inlet stagnation to exit pressure is found from

p01
p2

¼ p02
p2

� p01
p02

¼ 1
0:5721� 0:9559

¼ 1:829.

The cascade loss coefficient can then be determined:

YP ¼ p01 � p02
p01 � p2

¼ 1� p02=p01
1� p2=p01

¼ 1� 0:9559

1� 1:829�1 ¼ 0:0973.
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The Zweifel coefficient can be expressed in terms of non-dimensional groups that are each a function of Mach
number. By expressing the Zweifel coefficient in this way, the compressible flow tables can then be used to eval-
uate each of the parameters required:

Z ¼ _mðcy1 þ cy2Þ
ð p01� p2ÞbH ¼ _m

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Hscos α1p01

�ðc1sin α1=
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p þ c2sin α2=
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p Þ�Hscos α1
ð1� p2=p01ÞbH .

The Zweifel coefficient is then simplified to the following function of the blade pitch to axial chord ratio, the
inlet and exit Mach numbers and the flow angles:

Z¼QðM1Þ�
ðc1=

ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p � sin α1 þ c2=
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p � sin α2Þ� cos α1
ð1� p2=p01Þ � s

b
.

Rearranging this equation to find the pitch to axial chord ratio gives

s

b
¼ ð1� p2=p01ÞZ

QðM1Þ� ðc1=
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p � sin α1 þ c2=
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p � sin α2Þ� cos α1
.

Putting in the values and using the compressible flow tables where needed,

s

b
¼ ð1� 1:829�1Þ� 0:6

0:6295�½0:1881� sinð22°Þ þ 0:5431� sinð61:4°Þ� � cosð22°Þ ¼ 0:851.

Flow Exit Angle
For turbine blades the low amount of diffusion on the suction surface together with the thin boundary
layers imply that the flow exit angle is much closer to the metal angle at the trailing edge than for a
compressor cascade blade. (i.e., a small deviation angle). However, accurate prediction of the exit
angle is extremely important because the downstream flow area, Hs cos α2, varies rather rapidly
with the exit angle α2.

At high Mach numbers the flow exit angle can be determined from compressible flow relationships.
Figure 3.29 shows the flow through a choked turbine cascade. When the blade throat is choked the
mass average Mach number across the throat is unity, in which case, (referring to eqn. 1.38):

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hop	o

¼Qð1Þ, (3.57)

where o is the minimum distance at the blade throat, as shown in Figure 3.29, and p	o is the stagnation
pressure at that location. Once the flow is choked, conditions upstream of the throat are fixed and inde-
pendent of the downstream pressure.

Downstream of the cascade the flow area is s cos α2 and the Mach number is M2,

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hs cos α2p02

¼QðM2Þ; (3.58)
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hence, by combining the preceding two equations,

cos α2 ¼ Qð1Þ
QðM2Þ�

p	0
p02

� o

s
. (3.59)

If the losses downstream of the throat are small then p02 ≈ p	0, so

cos α2 ¼ Qð1Þ
QðM2Þ�

o

s
. (3.60)

In particular, when M2 ¼ 1, then α2 ¼ cos�1(o ⁄s).
Figure 3.30 indicates how the angle α2 varies from subsonic to supersonic flow. For subsonic flows

the exit angle varies very little with Mach number. For supersonic exit flows, Q(M2) < Q(1) and it
follows from eqn. (3.60) that α2 decreases. This is known as supersonic deviation. As shown by
Figure 3.30, further deviation is observed in experimental measurements. The additional deviation
relative to the theory is caused by stagnation pressure losses downstream of the throat, p02 < p	0
and the blockage caused by the growth of boundary layers on the blade surfaces.

Figure 3.31 shows plots of how the various components of loss coefficient, ξ, vary with exit Mach
number, M2, for a typical high-speed turbine cascade, taken from Mee et al. (1992). This plot

l s

o

Throat
M 5 1

�2

M2

s cos �2

FIGURE 3.29

Flow through a Choked Turbine Cascade
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demonstrates how the loss coefficient of a turbine blade rises rapidly as M2 approaches and exceeds
unity. This rise in loss is closely related to the thickness of the blade trailing edge. It is partly caused
by the shock waves but it is also due to mixing and the complex trailing edge flow pattern. This pattern
generates a low pressure region at the trailing edge, causing a drag force to act on the blade. This is
investigated in detail within Sieverding, Richard, and Desse (2003).

Turbine Limit Load
Turbines frequently operate with supersonic exit flows and at such conditions shock waves emanate
from the trailing edge. One branch of the shock wave propagates downstream but the other branch
reflects off the suction surface of the adjacent blade. The configuration of these shock waves is
shown in Figure 3.32 using a Schlieren photograph of the flow in a transonic turbine cascade at a
downstream Mach number, M2¼ 1.15.

The back pressure of the cascade can be lowered until the axial velocity component of the exit flow
is equal to the sonic speed. This condition is called the limit load and is the point where information

FIGURE 3.32

Schlieren Photograph of Flow in a Highly Loaded Transonic Turbine Cascade with an Exit Mach Number of 1.15
(from Xu, 1985)

3.6 Turbine Cascades 91



(i.e., pressure waves) cannot travel upstream. At limit load, Mx,lim¼M2,lim cos α2,lim¼ 1.0, which implies
that

M2,lim ¼ 1
cos α2,lim

. (3.61)

Conservation of mass means that

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hs cos α2,lim p02

¼QðM2,limÞ¼
_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hop	o

� p	o
p02

� o

s cos α2,lim
.

Given that the throat is choked, as in eqn. (3.57),

_m
ffiffiffiffiffiffiffiffiffi
cpT0

p
Hop	o

¼Qð1Þ,

so that

QðM2,limÞ¼Qð1Þ� p	o
p02

� o

s cos α2,lim
. (3.62)

Equations (3.61) and (3.62) can be solved simultaneously to enable both M2,lim and α2,lim to be deter-
mined. Typically, the range of maximum exit Mach number is 1.4 < M2,lim < 2.0.
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PROBLEMS

1. Experimental compressor cascade results suggest that the stalling lift coefficient of a cascade
blade may be expressed as

CL
c1
c2

� �3

¼ 2:2,

where c1 and c2 are the entry and exit velocities. Find the stalling inlet angle for a compressor
cascade of space–chord ratio unity if the outlet air angle is 30°.

2. Show, for a turbine cascade, using the angle notation of Figure 3.28, that the lift coefficient is

CL ¼ 2ðs=lÞðtan α1 þ tan α2Þcos αm þ CD tan αm,

where tan αm¼ 1
2(tan αm� tan α1) and CD ¼ drag= 1

2 ρc
2
ml


 �
. A cascade of turbine nozzle vanes has

a blade inlet angle α
0
1 of 0°, a blade outlet angle α

0
2 of 65.5°, a chord length l of 45 mm and an

axial chord b of 32 mm. The flow entering the blades is to have zero incidence and an estimate of
the deviation angle based upon similar cascades is that δ will be about 1.5° at low outlet Mach
number. If the blade load ratio Z defined by eqn. (3.55) is to be 0.85, estimate a suitable space–
chord ratio for the cascade. Determine the drag and lift coefficients for the cascade given that the
profile loss coefficient is

λ¼Δp0=
1
2
ρc22

� �
¼ 0:035.

3. A compressor cascade is to be designed for the following conditions:

Nominal fluid outlet angle : α	2 ¼ 30°
Cascade camber angle : θ¼ 30°
Pitch=chord ratio : s=l¼ 1:0
Circular arc camber line : a=l¼ 0:5

Using Howell’s curves and his formula for nominal deviation, determine the nominal incidence,
the actual deviation for an incidence ofþ 2.7° and the approximate lift coefficient at this
incidence.

4. A compressor cascade is built with blades of circular arc camber line, a space–chord ratio of 1.1
and blade angles of 48° and 21° at inlet and outlet. Test data taken from the cascade shows that at
zero incidence (i¼ 0) the deviation δ¼ 8.2° and the total pressure loss coefficient
ω¼Δp0= 1

2 ρc
2
1


 �¼ 0.015. At positive incidence over a limited range (0 � i � 6°) the variation
of both δ and ω for this particular cascade can be represented with sufficient accuracy by linear
approximations:

dδ
di

¼ 0.06,
dω
di

¼ 0.001,

where i is in degrees. For a flow incidence of 5.0° determine
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(i) the flow angles at inlet and outlet;
(ii) the diffuser efficiency of the cascade;
(iii) the static pressure rise of air with a velocity 50 m/s normal to the plane of the cascade.

Assume density of air is 1.2 kg/m3.

5. (a) A cascade of compressor blades is to be designed to give an outlet air angle α2 of 30° for an
inlet air angle α1 of 50° measured from the normal to the plane of the cascade. The blades are
to have a parabolic arc camber line with a ⁄ l¼ 0.4 (i.e., the fractional distance along the
chord to the point of maximum camber). Determine the space–chord ratio and blade outlet
angle if the cascade is to operate at zero incidence and nominal conditions. You may assume
the linear approximation for nominal deflection of Howell’s cascade correlation:

ε	 ¼ ð16� 0.2α	2Þð3� s=lÞ ½degrees�,

as well as the formula for nominal deviation:

δ	 ¼ 0.23
2a
l

� �2

þ α	2
500

" #
θ

ffiffi
s

l

r
degrees½ �.

(b) The space–chord ratio is now changed to 0.8, but the blade angles remain as they are in
part (a). Determine the lift coefficient when the incidence of the flow is 2.0°. Assume that
there is a linear relationship between ε ⁄ ε* and (i� i*) ⁄ ε* over a limited region, viz. at
(i� i*) ⁄ ε*¼ 0.2, ε ⁄ ε*¼ 1.15, and at i¼ i*, ε ⁄ ε*¼ 1. In this region take CD¼ 0.02.

6. (a) Show that the pressure rise coefficient Cp ¼Δp= 1
2 ρc

2
1


 �
of an incompressible compressor cas-

cade is related to the total pressure loss coefficient ζ by the following expression:

Cp ¼ 1�ðsec 2α2 þ ζ Þ=sec 2α1,

ζ ¼Δp0=
1
2
ρc2x

� �
,

where α1, α2¼ flow angles at cascade inlet and outlet.
(b)Determine a suitable maximum inlet flow angle of a low speed compressor cascade having a

space–chord ratio 0.8 and α2¼ 30° when the diffusion factor DF is limited to 0.6. The defini-
tion of diffusion factor that should be used is the early Lieblein formula (1959):

DF¼ 1� cos α1
cos α2

� �
þ s

l

� � cos α1
2

tan α1 � tan α2ð Þ.

(c) The stagnation pressure loss derived from flow measurements on this cascade is 149 Pa when
the inlet velocity c1 is 100 m/s at an air density ρ of 1.2 kg/m3. Determine the values of
(i) pressure rise and
(ii) drag and lift coefficients.
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7. A two-dimensional compressor cascade is tested in air with an inlet stagnation pressure of 1 bar
and an inlet stagnation temperature of 300 K. For an inlet Mach number of 0.75 and an inlet flow
angle of 50°, the exit flow angle is measured as 15.8°. Determine the mass flow rate per unit
frontal area. Assuming the flow is isentropic, calculate the exit Mach number and the static pres-
sure ratio across the cascade.

8. A compressor blade design tested in a cascade is found to choke with an inlet Mach number of
0.9 when the inlet flow angle is 52°. If the ratio of the throat area to the frontal area, A* ⁄H1s, for
the cascade is 0.625, calculate the loss of stagnation pressure between the far upstream and the
throat and express this as a loss coefficient. Comment on what could cause this loss.

9. A turbine cascade operates in air with an inlet angle of 45° from the axial direction. The ratio of
inlet stagnation pressure to exit static pressure is 2.6 and the inlet Mach number is 0.3.

(a) If the stagnation pressure loss coefficient, YP, is measured to be 0.098, calculate the exit Mach
number and show that the exit angle is 67.7°. It can be assumed that the blade height is con-
stant through the cascade and that the growth of sidewall boundary layers is negligible.

(b) The opening to pitch ratio of the cascade is 0.354. For the operating point described in part (a),
show that approximately two thirds of the total loss in stagnation pressure occurs downstream of
the throat.

(c) The exit static pressure from the cascade is lowered until limit load is achieved. The exit
Mach number at this condition is measured to be 1.77. Given that the stagnation pressure
loss upstream of the throat is unchanged, determine the new overall stagnation pressure
loss coefficient for the cascade.
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CHAPTER

Axial-Flow Turbines: Mean-Line
Analysis and Design 4

Power is more certainly retained by wary measures than by daring counsels.
Tacitus, Annals

4.1 INTRODUCTION
The modern axial-flow turbine developed from a long line of inventions stretching back in time to the
aeolipile of Heron (aka Hero) of Alexandria around 120 B.C. Although we would regard it as a toy it did
demonstrate the important principle that rotary motion could be obtained by the expansion of steam
through nozzles. Over the centuries many developments of rotary devices took place with wind and
water driven mills, water driven turbines, and the early steam turbine of the Swedish engineer
Carl de Laval in 1883. The main problems of the de Laval turbines arose from their enormous rotational
speeds, the smallest rotors attained speeds of 26,000 rpm and the largest had peripheral speeds in excess
of 400 m/s. Learning from these mistakes, Sir Charles Parsons in 1891 developed a multi-stage
(15 stages) axial-flow steam turbine, which had a power output of 100 kW at 4800 rpm. Later, and rather
famously, a Parsons steam turbine rated at 1570 kW was used to power a 30 m long ship, Turbinia, at
what was regarded as an excessive speed at a grand review of naval ships at Spithead, England, in 1897.
It outpaced the ships ordered to pursue it and to bring order to the review. This spectacular dash at once
proved to all the capability and power of the steam turbine and was a turning point in the career of
Parsons and for the steam turbine. Not long after this most capital ships of the major powers employed
steam turbines rather than old-fashioned piston engines.

From this point on the design of steam turbines evolved rapidly. By 1920 General Electric was
supplying turbines rated at 40 MW for generating electricity. Significant progress has since been
made in the size and efficiency of steam turbines with 1000 MW now being achieved for a single
shaft plant. Figure 4.1 shows the rotor of a modern double-flow low pressure turbine with this
power output.

The development of the axial-flow turbine is tied to the history of the aircraft gas turbine but clearly
depended upon the design advances made previously in the field of steam turbines. In this chapter
the basic thermodynamic and aerodynamic characteristics of axial-flow turbines are presented. The
simplest approach to their analysis is to assume that the flow conditions at a mean radius, called the
pitchline, represent the flow at all radii. This two-dimensional analysis can provide a reasonable
approximation to the actual flow, provided that the ratio of blade height to mean radius is small.
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However, when this ratio is large, as in the final stages of an aircraft or a steam turbine, a more elaborate
three-dimensional analysis is necessary. Some elementary three-dimensional analyses of the flow in
axial turbomachines of low hub-to-tip ratio, e.g., rh /rt ≈ 0.4, are discussed in Chapter 6. One further
assumption required for the purposes of mean line analysis is that the flow is invariant along the circum-
ferential direction (i.e., there are no significant “blade-to-blade” flow variations).

For turbines the analysis is presented with compressible flow effects in mind. This approach is then
applicable to both steam and gas turbines provided that, in the former case, the steam condition remains
wholly within the vapour phase (i.e., superheat region).

The modern axial-flow turbine used in aircraft engines now lies at the extreme edge of technolo-
gical development; the gases leaving the combustor can be at temperatures of around 1600°C or more
whilst the material used to make turbine blades melt at about 1250°C. Even more remarkable is the fact
that these blades are subjected to enormous centrifugal forces and bending loads from deflecting the
hot gases. The only way these temperature and stress levels can be sustained is by an adequate cooling
system of HP air supplied from the final stage compressor. In this chapter a brief outline of the basic
ideas on cenrifugal stresses and some of the methods used for blade cooling is given. Figure 4.2 shows
the three shaft axial-flow turbine system of a Rolls Royce Trent turbofan engine.

FIGURE 4.1

Large Low Pressure Steam Turbine (with kind permission of Siemens Turbines)
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4.2 VELOCITY DIAGRAMS OF THE AXIAL-TURBINE STAGE
The axial turbine stage comprises a row of fixed guide vanes or nozzles (often called a stator row) and a
row of moving blades or buckets (a rotor row). Fluid enters the stator with absolute velocity c1 at angle
α1 and accelerates to an absolute velocity c2 at angle α2 (Figure 4.3). All angles are measured from
the axial (x) direction. The sign convention is such that angles and velocities as drawn in Figure 4.3
will be taken as positive throughout this chapter. From the velocity diagram, the rotor inlet relative
velocity w2, at an angle β2, is found by subtracting, vectorially, the blade speed U from the absolute
velocity c2. The relative flow within the rotor accelerates to velocity w3 at an angle β3 at rotor outlet;

Combustor

High-pressure
turbine

Intermediate-
pressure
turbine

Low-pressure
turbines

FIGURE 4.2

Turbine Module of a Modern Turbofan Jet Engine (with kind permission from Rolls-Royce plc)
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the corresponding absolute flow (c3, α3) is obtained by adding, vectorially, the blade speed U to the
relative velocity w3.

When drawing the velocity triangles it is always worth sketching the nozzle and rotor rows beside
them, as shown in Figure 4.3. This helps prevent errors, since the absolute velocities are roughly
aligned with the inlet and exit angles from the nozzle row and the relative velocities are aligned
with the rotor row. Note that, within an axial turbine, the levels of turning are very high and the
flow is turned through the axial direction in both the rotors and nozzles.

The continuity equation for uniform, steady flow is

ρ1Ax1cx1 ¼ ρ2Ax2cx2 ¼ ρ3Ax3cx3. ð4:1Þ

4.3 TURBINE STAGE DESIGN PARAMETERS
Three key non-dimensional parameters are related to the shape of the turbine velocity triangles and are
used in fixing the preliminary design of a turbine stage.

Design Flow Coefficient
This was introduced in Chapter 2. It is strictly defined as the ratio of the meridional flow velocity to the
blade speed, �¼ cm /U, but in a purely axial flowmachine,�¼ cx /U. The value of � for a stage determines
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FIGURE 4.3

Turbine Stage Velocity Diagrams
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the relative flow angles. A stage with a low value of � implies highly staggered blades and relative flow
angles close to tangential. High values imply low stagger and flow angles closer to axial. For a fixed
geometry and fixed rotational speed, the mass flow through the turbine increases with increasing �.

Stage Loading Coefficient
The stage loading is defined as the ratio of the stagnation enthalpy change through a stage to the square
of the blade speed, ψ¼Δh0 /U

2. In an adiabatic turbine, the stagnation enthalpy change is equal to the
specific work, ΔW, and for a purely axial turbine with constant radius, we can use the Euler work equa-
tion (eqn. 1.19b) to write Δh0¼UΔcθ. The stage loading can therefore be written as

ψ ¼ Δcθ=U, ð4:2Þ
where Δcθ represents the change in the tangential component of absolute velocity through the rotor.
Thus, high stage loading implies large flow turning and leads to highly “skewed” velocity triangles
to achieve this turning. Since the stage loading is a non-dimensional measure of the work extraction
per stage, a high stage loading is desirable because it means fewer stages are needed to produce a
required work output. However, as shown in later sections of this chapter, the stage loading is limited
by the effects that high stage loadings have on efficiency.

Stage Reaction
The stage reaction is defined as the ratio of the static enthalpy drop in the rotor to the static enthalpy
drop across the stage. Thus,

R ¼ ðh2 � h3Þ=ðh1 � h3Þ. ð4:3aÞ
Taking the flow through a turbine as nearly isentropic the equation of the second law of thermo-

dynamics, Tds¼ dh – dp/ρ can be approximated by dh¼ dp/ρ, and ignoring compressibility effects, the
reaction can thus be approximated as

R ≈ ð p2 � p3Þ=ð p1 � p3Þ. ð4:3bÞ
The reaction therefore indicates the drop in pressure across the rotor compared to that for the stage.

However, as a design parameter, the reaction is more significant since it describes the asymmetry of the
velocity triangles and is therefore a statement of the blade geometries. As will be shown later, a 50%
reaction turbine implies velocity triangles that are symmetrical, which leads to similar stator and rotor
blade shapes. In contrast, a zero reaction turbine stage implies little pressure change through the rotor.
This requires rotor blades that are highly cambered, that do not accelerate the relative flow greatly, and
low cambered stator blades that produce highly accelerating flow.

4.4 THERMODYNAMICS OF THE AXIAL-TURBINE STAGE
The work done on the rotor by unit mass of fluid, the specific work, equals the stagnation enthalpy
drop incurred by the fluid passing through the stage (assuming adiabatic flow). From the Euler
work equation (1.19a), we can write

ΔW ¼ _W= _m ¼ h01 � h03 ¼ Uðcθ2 þ cθ3Þ. ð4:4Þ
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In eqn. (4.4) the absolute tangential velocity components (cθ) are added, so as to adhere to the
agreed sign convention of Figure 4.3. As no work is done in the nozzle row, the stagnation enthalpy
across it remains constant and

h01¼ h02. ð4:5Þ

In an axial turbine, the radial component of velocity is small. Writing h0¼ hþ 1
2ðc2x þ c2θÞ and using

eqn. (4.5) in eqn. (4.4) we obtain

h02 � h03 ¼ ðh2 � h3Þþ 1
2
ðc2θ2 � c2θ3Þþ

1
2
ðc2x2 � c2x3Þ ¼ Uðcθ2 þ cθ3Þ,

hence,

h2 � h3ð Þþ 1
2
cθ2 þ cθ3ð Þ cθ2 �Uð Þ� cθ3 þ Uð Þ½ �þ 1

2
c2x2 � c2x3

 � ¼ 0.

It is observed from the velocity triangles of Figure 4.3 that cθ2�U¼wθ2, cθ3þU¼wθ3 and cθ2þ cθ3¼
wθ2 þ wθ3. Thus,

h2 � h3ð Þþ 1
2
ðw2

θ2 �w2
θ3Þþ

1
2
ðc2x2 � c2x3Þ ¼ 0.

This equation can be reduced to

h2 þ 1
2
w2
2 ¼ h3 þ 1

2
w2
3 or h02,rel ¼ h03,rel. ð4:6Þ

Thus, the relative stagnation enthalpy, h0,rel ¼ hþ 1
2w

2, remains unchanged through the rotor of a purely
axial turbomachine. It is assumed that no radial shift of the streamlines occurs in this flow. In somemodern
axial turbines the mean flow may have a component of radial velocity, and in this case the more general
form of the Euler work equation must be used to account for changes in the blade speed perceived by the
flow, see eqn. (1.21a). It is then the rothalpy that is conserved through the rotor,

h2 þ 1
2
w2
2 �

1
2
U2

2 ¼ h3 þ 1
2
w2
3 �

1
2
U2

3 or I2 ¼ I3 ð4:7Þ

where U2 and U3 are the local blade speeds at inlet and outlet from the rotor, U2¼ r2Ω and U3¼ r3Ω.
Within the rest of this chapter, the analysis presented is directed at purely axial turbines that have a constant
mean flow radius and therefore a single blade speed.

A Mollier diagram showing the change of state through a complete turbine stage, including the
effects of irreversibility, is given in Figure 4.4.

Through the nozzles, the state point moves from 1 to 2 and the static pressure decreases from p1 to p2.
In the rotor row, the absolute static pressure reduces (in general) from p2 to p3. It is important to note that
all the conditions contained in eqns. (4.4) – (4.6) are satisfied in the figure.
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4.5 REPEATING STAGE TURBINES
Aero-engine and power generation applications require turbines with high power output and high effi-
ciency. To achieve this, an axial turbine with multiple stages is required. In these multi-stage axial-flow
turbines, the design is often chosen to have identical, or at least very similar, mean velocity triangles for
all stages. To achieve this, the axial velocity and the mean blade radius must remain constant through-
out the turbine. To allow for the reduction in fluid density that arises as the flow expands through the
turbine, the blade height must be continuously increasing between blade rows. Figure 4.5 shows the
arrangement of a multi-stage turbine within an aero-engine, showing the increasing blade height and
the constant mean radius.

For the velocity diagrams to be the same, the flow angles at exit from each stage must be equal to
those at the inlet. The requirements for a repeating stage can therefore be summarized as

cx ¼ constant, r ¼ constant, α1 ¼ α3.

Note that a single stage turbine can also satisfy these conditions for a repeating stage. Stages satisfying
these requirements are often referred to as normal stages.

For this type of turbine, several useful relationships can be derived relating the shapes of the velo-
city triangles to the flow coefficient, stage loading, and reaction parameters. These relationships are
important for the preliminary design of the turbine.
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Mollier Diagram for a Turbine Stage
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Starting with the definition of reaction,

R ¼ ðh2 � h3Þ=ðh1 � h3Þ ¼ 1�ðh1 � h2Þ=ðh01 � h03Þ. ð4:8Þ
Note that h01� h03¼ h1� h3 since the inlet and exit velocities for the stage are equal. Through the sta-
tor no work is done, so the stagnation enthalpy stays constant across it. Given that the axial velocity is
also constant this gives

h1 � h2ð Þ ¼ h01 � h02ð Þ þ 1
2
ðc22 � c21Þ ¼

1
2
c2xðtan 2α2 � tan 2α1Þ. ð4:9Þ

From the definition of stage loading,

ðh01 � h03Þ ¼ U2ψ. ð4:10Þ
Substituting these in the equations for the reaction (4.3) and by applying the definition of flow coeffi-
cient for a purely axial turbine, �¼ cx /U, the following is obtained:

R ¼ 1� �2

2ψ
ðtan 2α2 � tan 2α1Þ. ð4:11Þ

This is true whether or not the exit angle from the stage equals the inlet angle. It shows how the three
non-dimensional design parameters are related to the flow angles at inlet and exit from the turbine
nozzle. In a repeating stage turbine this relationship can be further simplified, since the stage loading
can be written as follows:

ψ ¼ Δcθ
U

¼ cxðtan α2 þ tan α3Þ
U

¼ �ðtan α2 þ tan α1Þ. ð4:12Þ

Substituting this into equation (4.11) we obtain

R ¼ 1� �

2
ðtan α2 � tan α1Þ. ð4:13aÞ

This can be combined with eqn. (4.12) to eliminate α2. Adding 2 � eqn. (4.13a) to eqn (4.12) gives the
following relationship between stage loading, flow coefficient, and reaction:

ψ ¼ 2ð1�Rþ � tan α1Þ. ð4:14Þ
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FIGURE 4.5

General Arrangement of a Repeating Six-Stage Turbine
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This is a very useful result. It also applies to repeating stages of compressors. It shows that, for high
stage loading, ψ, the reaction, R, should be low and the inter-stage swirl angle, α1¼ α3, should be as
large as possible. Equations (4.13a) and (4.14) also show that, once the stage loading, flow coefficient,
and reaction are fixed, all the flow angles, and thus the velocity triangles, are fully specified. This is true
since eqn. (4.14) gives α1, and α2 then follows from eqn. (4.13). The other angles of the velocity triangles
are then fixed from the repeating stage condition, α1¼ α3, and the relationship between relative and abso-
lute flow angles,

tan β2 ¼ tan α2 � 1
�
, tan β3 ¼ tan α3 þ 1

�
. ð4:15Þ

Note that by combining eqn. (4.15) with eqn. (4.13a) another useful equation for the reaction can be
formed in terms of the relative flow angles,

R ¼ �

2
tan β3� tan β2ð Þ. ð4:13bÞ

In summary, to fix the velocity triangles for a repeating stage a turbine designer can fix �, ψ, and R
or �, ψ, and α1 (or indeed any independent combination of three angles and parameters). Once the velo-
city triangles are fixed, key features of the turbine design can be determined, such as the turbine blade
sizes and the number of stages needed. The expected performance of the turbine can also be estimated.
These aspects of the preliminary design are considered further in section 4.7.

Note also that the choice of the velocity triangles for the turbine (i.e., the choice of �, ψ, and R) are
largely determined by best practice and previous experience. For a company that has already designed
and tested many turbines of a similar style, it will be very challenging to produce a turbine with very
different values of �, ψ, and R that has as good performance as its previous designs.

4.6 STAGE LOSSES AND EFFICIENCY
In Chapter 1 various definitions of efficiency for complete turbomachines were given. For a turbine
stage the total-to-total efficiency is

ηtt ¼
actual work output

ideal work output when operating to same back pressure
¼ h01 � h03ð Þ= h01 � h03ssð Þ.

At the entry and exit of a repeating (or normal) stage, the flow conditions (absolute velocity and flow
angle) are identical, i.e., c1¼ c3 and α1¼ α3. If it is assumed that c3ss¼ c3, which is a reasonable approx-
imation for turbines operating with a fairly low pressure ratio, the total-to-total efficiency then becomes

ηtt ¼ ðh1 � h3Þ=ðh1 � h3ssÞ ¼ ðh1 � h3Þ=½ðh1 � h3Þ þ ðh3 � h3sÞ þ ðh3s � h3ssÞ�. ð4:16Þ

Now the slope of a constant pressure line on a Mollier diagram is (∂h / ∂s)p¼ T, obtained from
eqn. (1.28). Thus, for a finite change of enthaply in a constant pressure process, Δhffi TΔs and, therefore,

h3s � h3ssffi T3ðs3s � s3ssÞ, ð4:17aÞ
h2 � h2sffi T2ðs2 � s2sÞ. ð4:17bÞ
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Noting, from Figure 4.1, that s3s � s3ss¼ s2 � s2s, the last two equations can be combined to give

h3s � h3ss ¼ ðT3=T2Þðh2 � h2sÞ. ð4:18Þ
The effects of irreversibility through the stator and rotor are expressed by the differences in static

enthalpies, (h2 � h2s) and (h3 � h3s), respectively. Non-dimensional enthalpy “loss” coefficients can be
defined in terms of the exit kinetic energy from each blade row. Thus, for the nozzle row,

h2 � h2s¼ 1
2
c22ζN . ð4:19aÞ

For the rotor row,

h3 � h3s¼ 1
2
w2
3ζ R. ð4:19bÞ

Combining eqns. (4.19a) and (4.19b) with eqn. (4.16) gives

ηtt ¼ 1þ ζ Rw
2
3 þ ζNc

2
2T3=T2

2ðh1 � h3Þ
� ��1

. ð4:20aÞ

When the exit velocity is not recovered (in Chapter 1, examples of such cases are quoted) a total-
to-static efficiency for the stage is used:

ηts ¼ h01 � h03ð Þ= h01 � h3ssð Þ ¼ 1þ ζ Rw
2
3 þ ζNc

2
2T3=T2 þ c21

2ðh1 � h3Þ
� ��1

, ð4:21aÞ

where, as before, it is assumed that c1¼ c3.
In initial calculations or in cases where the static temperature drop through the rotor is not large, the

temperature ratio T3 / T2 is set equal to unity, resulting in the more convenient approximations:

ηtt ¼ 1þ ζ Rw
2
3 þ ζ Nc

2
2

2ðh1 � h3Þ
� ��1

, ð4:20bÞ

ηts ¼ 1þ ζ Rw
2
3 þ ζNc

2
2 þ c21

2ðh1 � h3Þ
� ��1

. ð4:21bÞ

So that estimates can be made of the efficiency of a proposed turbine stage as part of the preliminary
design process, some means of determining the loss coefficients is required. Several methods for doing
this are available with varying degrees of complexity. The blade row method proposed by Soderberg
(1949) and reported by Horlock (1966), although old, is still useful despite its simplicity. Ainley and
Mathieson (1951) correlated the profile loss coefficients for nozzle blades (which give 100%
expansion) and impulse blades (which give 0% expansion) against flow deflection and pitch–chord
ratio for stated values of Reynolds number and Mach number. Details of their method are given in
Chapter 3. For blading between impulse and reaction the profile loss is derived from a combination
of the impulse and reaction profile losses (see eqn. 3.49). Horlock (1966) has given a detailed compar-
ison between these two methods of loss prediction. A refinement of the Ainley and Mathieson predic-
tion method was later reported by Dunham and Came (1970).
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It should be remembered that loss coefficients based on cascade testing represent only the two-
dimensional loss of the aerofoils and in a real turbine various three-dimensional effects also contribute
to the loss. These three-dimensional effects include the tip leakage jet, the mixing of any coolant flows
and the secondary flows on the turbine end walls. These effects are significant and can contribute more
than 50% of the total losses. A description of the various loss mechanisms in turbomachines is given by
Denton (1993). This details how the various flow features in a turbine lead to loss sources that can be
quantified. Of course, all these losses can be crudely accounted for within a single blade-row loss coef-
ficient, as used in mean-line analysis, but it is very difficult to accurately determine the value required.
In many cases, values derived from testing a similar machine are used initially then later refined.

Further preliminary methods of predicting the efficiency of axial flow turbines have been devised,
such as those of Craig and Cox (1971), Kacker and Okapuu (1982), and Wilson (1987). Also various
proprietary methods are used within industry that are generally semi-empirical methods based on previ-
ous test results for turbine stages of a similar design. In addition, computational fluid dynamics can be
used to estimate efficiency. However, although CFD can often accurately predict trends in efficiency,
absolute performance levels are elusive even with the latest three-dimensional methods. In addition,
CFD can be applied only once, detailed turbine rotor and stator geometries have been created. It is
therefore more applicable later in the design process (see Chapter 6). Wilson, tellingly, remarked
that despite the emergence of “computer programs of great power and sophistication,” these have
not yet replaced the preliminary design methods. It is, clearly, essential for a design to converge as
closely as possible to an optimum configuration using preliminary design methods before carrying
out the final design refinements using computational fluid dynamics.

4.7 PRELIMINARY AXIAL TURBINE DESIGN
The process of choosing the best turbine design for a given application involves juggling several para-
meters that may be of equal importance, for instance, rotor stress, weight, outside diameter, efficiency,
noise, durability, and cost, so that the final design lies within acceptable limits for each parameter. In
consequence, a simple presentation can hardly do justice to the real problem of an integrated turbine
design. However, a consideration of how the preliminary design choices affect the turbine basic layout
and the efficiency can provide useful guidance to the designer.

As demonstrated earlier in the chapter, the main goal in the preliminary stage design of a turbine is
to fix the shapes of the velocity triangles, either by setting the flow angles or by choosing values for the
three dimensionless design parameters, �, ψ, and R. If we now consider matching the overall (dimen-
sioned) requirements of the turbine to the velocity triangle parameters, the general layout of the turbo-
machine can also be determined.

Number of Stages
Firstly, from the specification of the turbine, the design will usually have a known mass flow rate of the
working fluid and a required power output. This enables the specific work output of the turbine to be
calculated according to ΔW ¼ _W= _m. The specific work per stage can be determined from the stage
loading and the blade speed and, thus, the required number of stages can be found:

nstage ≥
_W

_mψU2
. ð4:22Þ
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An inequality is used in eqn. (4.22) since the number of stages must be an integer value. The result
shows how a large stage loading can reduce the number of stages required in a multi-stage turbine. It
also shows that a high blade speed, U, is desirable. However, this is usually constrained by a stress
limit, because centripetal loadings and vibration rise rapidly with rotor speed (see later in this chapter).
In some cases aerodynamic or acoustic considerations may limit the maximum blade speed. For exam-
ple, if a turbine is required to operate with transonic flow, the blade speed may be constrained by the
need to limit the maximum flow Mach number.

Blade Height and Mean Radius
Given that the axial velocity remains constant throughout each stage, i.e., cx1¼ cx2¼ cx3¼ cx, then the
continuity equation for the turbine reduces to

ρ1Ax1 ¼ ρ2Ax2 ¼ ρ3Ax3 ¼ constant. ð4:23Þ
If the mass flow rate through the machine is specified the annulus area, Ax, can be determined from

the continuity equation combined with the flow coefficient:

Ax ¼ _m

ρ�U
≈ 2π� rmH. ð4:24Þ

This equation is only approximate since it assumes the mean radius is exactly midway between the hub
and tip, i.e., rm¼ (rtþ rh) ⁄ 2. To be precise, the mean radius should be the radius that divides the annu-
lus into two equal areas, i.e., r2m ¼ ðr2t þ r2hÞ=2. However, for high hub-to-tip radius ratios these defini-
tions of mean radius are equivalent. In all cases, an accurate expression for the annulus area is given by

Ax ¼ π� r2t ½1�ðrh=rtÞ2�. ð4:25Þ
This equation is useful for determining the annulus area if the hub-to-tip radius ratio required for the
turbine is known or if the casing diameter is set by the need to fit the machine in with other
components.

Often, the mean radius will be fixed by the need to rotate at a particular rotational speed (e.g., for
mains electricity, Ω¼ 50 Hz¼ 3000 rpm) and using a known blade speed, rm¼U ⁄Ω. The spanwise
height required for the blades can then be determined from

rt � rh ¼ H ≈
_m

ρ�U2π� rm
. ð4:26Þ

In compressible flow machines, the inlet stagnation conditions and the inlet axial Mach number
may be known. This then fixes the inlet annulus area via the mass flow function:

_m
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Ax cos α1

¼ QðM1Þ. ð4:27Þ

The area found from this can then be used with eqn. (4.24) or (4.25) to find the blade span. For the
subsequent, downstream stage, the stagnation temperature and pressure can be found from the follow-
ing relationship for the stage loading and pressure ratio:

T03
T01

¼ 1� ψU2

CpT01
,
p03
p01

¼ T03
T01

� �ηpγ=ðγ�1Þ
. ð4:28Þ
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Note that the polytropic efficiency is used here since this is more appropriate for calculating
changes in properties across a single stage. The Mach number at inlet to the downstream stage can
then be found from the velocity using the following compressible flow relationship (included in the
compressible flow tables):

c3ffiffiffiffiffiffiffiffiffiffiffiffi
CpT03

p ¼ M3

ffiffiffiffiffiffiffiffiffiffi
γ� 1

p
1þ γ� 1

2
M2

3

� ��1=2

. ð4:29Þ

The new annulus area is then determined from eqn. (4.27) and, given the fact that the mean radius is
constant, the blade span can be found. This process can be repeated for subsequent stages, enabling the
general arrangement of the entire turbine to be determined in terms of the size and number of stages.

Number of Aerofoils and Axial Chord
The number of aerofoils in each turbine row and the chord lengths of the vanes and blades can also be
estimated during the preliminary design. The aspect ratio of a blade row is the height, or blade span,
divided by the axial chord, H/b. A suitable value of this is set by mechanical and manufacturing
considerations and will vary between applications. For jet engine core turbines aspect ratios between
1 and 2 are usual, but low pressure turbines and steam turbines can have much higher values, as
demonstrated in Figures 4.1 and 4.2. To find the ratio of blade pitch to axial chord, s ⁄ b, the Zweifel
criterion for blade loading can be applied, as detailed in Chapter 3. Equations (3.55) and (3.56) show
how, given the turbine velocity triangles, the pitch to axial chord ratio can be found from an optimum
value of Zweifel coefficient. For a known axial chord, knowing s/b fixes the number of aerofoils.

4.8 STYLES OF TURBINE
Often, if the stage loading and flow coefficient are fixed by the overall requirements of the turbine and
the principal design constraints, only one parameter remains that the designer has the freedom to
change in the preliminary design. The classification of different styles of turbine design is most con-
veniently described by the reaction, because this relates to the turbine blade geometries. There are two
extremes: zero reaction, where the rotor and stator shapes are very different, and 50% reaction, where
the rotor and stator shapes are symmetric. The advantages and disadvantages of both these styles are
discussed next.

Zero Reaction Stage
Walker and Hesketh (1999) summarise the advantages of low reaction as enabling a high stage loading
with low interstage swirl, low thrust on the rotor, robust rotor blades, and lower tip leakage flows
(due to a low pressure drop across the rotor). However, they also point out that low reaction can
lead to boundary layer separation from the highly cambered rotor blades and they show how the
increased stage loading almost invariably leads to lower efficiency. Low reaction designs are therefore
most advantageous where the need to minimize the number of stages is critical.
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From the definition of reaction, when R¼ 0, eqn. (4.2) indicates that h2¼ h3 and, thus, all the
enthalpy drop occurs across the stator. From eqn. (4.13b) we can show that

R ¼ �

2
ðtan β3 � tan β2Þ ⇒ β2 ¼ β3.

Since the axial velocity is constant, this means that the relative speed of the flow across the rotor
does not change. The Mollier diagram and velocity triangles corresponding to these conditions are
sketched in Figure 4.6. From this it is also clear that, since h02rel¼ h03rel and h2¼ h3 for R¼ 0, it
follows that w2¼w3. It will be observed in Figure 4.7 that, because of irreversibility, there is a pressure
drop through the rotor row. The zero reaction stage is not the same thing as an impulse stage; in the
latter case there is, by definition, no pressure drop through the rotor. The Mollier diagram for an
impulse stage is shown in Figure 4.7 where it is seen that the enthalpy increases through the rotor.
The implication is clear from eqn. (4.3): the reaction is negative for the impulse turbine stage when
account is taken of the irreversibility.

50% Reaction Stage
Havakechian and Greim (1999) summarise the advantages of 50% reaction designs as symmetrical
velocity triangles leading to similar blade shapes and reduced cost, low turning and highly accelerating
passages leading to lower losses, an expansion split into two steps leading to subsonic Mach numbers
and improved performance over a range of operating conditions. However, they concede that 50%
reaction designs lead to increased turbine part count relative to low reaction designs since roughly
twice as many stages are needed, and also the greater expansion through the rotors increases the thrust
on the rotors and increases leakage losses.

The symmetrical velocity diagram for this case is shown in Figure 4.8. For R¼ 0.5, from
eqn. (4.13a) combined with eqn. (4.15), it is found that

R ¼ 1� �

2
ðtan α2 � tan α1Þ⇒ 1 ¼ � tan β2 þ

1
�
� tan α1

� �
⇒ β2 ¼ α1 ¼ α3.
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FIGURE 4.6

Velocity Diagram and Mollier Diagram for a Zero Reaction Turbine Stage

110 CHAPTER 4 Axial-Flow Turbines: Mean-Line Analysis and Design



Similarly, it can be shown that β3¼ α2 as well, proving that the velocity triangles are indeed
symmetric. Figure 4.8 has been drawn with the same values of cx, U, and ΔW as in Figure 4.6
(zero reaction case) to emphasise the difference in flow geometry between the 50% reaction and
zero reaction stages.

Example 4.1
A low pressure turbine within a turbofan jet engine consists of five repeating stages. The turbine inlet stagnation
temperature is 1200 K and the inlet stagnation pressure is 213 kPa. It operates with a mass flow of 15 kg s�1 and
generates 6.64 MW of mechanical power. The stator in each turbine stage turns the flow from 15° at stator inlet to
70° at stator outlet. The turbine mean radius is 0.46 m and the rotational shaft speed is 5600 rpm.
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FIGURE 4.8

Velocity Diagram and Mollier Diagram for a 50% Reaction Turbine Stage
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Mollier Diagram for an Impulse Turbine Stage
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(a) Calculate the turbine stage loading coefficient and flow coefficient. Hence, show that the reaction is 0.5 and
sketch the velocity triangles for one complete stage.

(b) Calculate the annulus area at inlet to the turbine. Use this to estimate the blade height and the hub-to-tip radius
ratio for the stator in the first turbine stage.

Take γ¼ 1.333, R¼ 287.2 J kg�1 K�1, and cp¼ 1150 J kg�1K�1 for the gas flowing through both designs of
turbine.

Solution
(a) The mean blade speed can be calculated from the mean radius and angular speed:

U ¼ rmΩ ¼ 0:46� 5600
60

� 2π ¼ 269:8 m=s.

The stage loading can then be determined from the power and mass flow:

ψ ¼ Δh0
U2

¼ Power=ð _m� nstageÞ
U2

¼ 6:64� 106

15� 5� 269:82
¼ 1:217.

The flow coefficient follows from eqn. (4.12):

� ¼ ψ
ðtan α2 þ tan α1Þ ¼

1:217
ðtan 70°þ tan 15°Þ ¼ 0:403.

The reaction can then be determined by rearranging eqn. (4.14):

R ¼ 1� ψ
2
þ � tan α1 ¼ 1� 1:217

2
þ 0:4 tan 15° ¼ 0:5.

Velocity triangles (symmetrical, since R¼ 0.5) are as follows:

c1

15°
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Rotor

c35c1
�35 �1

U
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w3
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w215°

70°

U

U
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(b) To calculate the inlet area, we first determine the axial Mach number from the inlet axial velocity then use the
compressible mass flow function:

c1xffiffiffiffiffiffiffiffiffiffiffi
cpT01

p ¼ �Uffiffiffiffiffiffiffiffiffiffiffi
cpT01

p ¼ 0:403� 269:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1150� 1200

p ¼ 0:09266.

From compressible flow tables (γ¼ 1.333), which implies that M1x ¼ 0:161, ð _m ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p Þ=Ax p01 ¼ Qð0:161Þ ¼
0:3663: Therefore,

Ax ¼
_m
ffiffiffiffiffiffiffiffiffiffiffi
cpT01

p
Qð0:161Þp01 ¼

15
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1150:1200

p

0:3663:213� 103
¼ 0:226 m2 .

In this case, given the low inlet Mach number, it would also be valid to calculate the density using the inlet
stagnation pressure and temperature then apply the continuity equation (4.24). Once the area is found, the
blade height and hub-to-tip radius ratio can be determined. For the blade height,

H ¼ Ax

2πrm
¼ 0:226

2π� 0:46
¼ 0:0782,

which implies that H¼ 78.2 mm. For the hub-to-tip ratio,

HTR ¼ rm �H=2
rm þ H=2

¼ 0:46� 0:0782=2
0:46þ 0:0782=2

¼ 0:843.

4.9 EFFECT OF REACTION ON EFFICIENCY
Consider the problem of selecting an axial turbine design for which the mean blade speed U, the stage
loading, ψ (or ΔW/U2), and the flow coefficient � (or cx /U) have already been selected. The only
remaining parameter required to completely define the velocity triangles is R or the inter-stage swirl
angle, α1, since from eqn. (4.14),

ψ ¼ 2ð1�Rþ � tan α1Þ.
For different values of R the velocity triangles can be constructed, the loss coefficients determined and
ηtt, ηts calculated. In Shapiro et al. (1957) Stenning considered a family of turbines each having a flow
coefficient cx /U¼ 0.4, blade aspect ratio H/b¼ 3, and Reynolds number Re¼ 105, and calculated ηtt,
ηts for stage loading factors ΔW/U2 of 1, 2, and 3 using Soderberg’s correlation. The results of this
calculation are shown in Figure 4.9 as presented by Shapiro et al. (1957).

In the case of total-to-static efficiency, it is at once apparent that this is optimised, at a given blade
loading, by a suitable choice of reaction. When ΔW/U2¼ 2, the maximum value of ηts occurs with
approximately zero reaction. With lighter blade loading, the optimum ηts is obtained with higher reac-
tion ratios. When ΔW/U2 > 2, the highest value of ηts attainable without rotor relative flow diffusion
occurring, is obtained with R¼ 0. Note that these results relate only to the blading efficiency and make
no allowance for losses due to tip clearance and disc friction.
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Example 4.2
Verify that the peak value of the total-to-static efficiency ηts shown in Figure 4.9 occurs at a reaction of 50% for the
curve marked ΔW/U2¼ 1 and determine its value. Apply Soderberg’s correlation and the data used by Stenning in
Shapiro et al. (1957).

Solution
From eqn. (4.21a),

1
ηts

¼ 1þ ζ Rw
2
3 þ ζNc

2
2 þ c21

2ΔW
.

As ΔW/U2¼ 1 and R¼ 0.5, from ψ¼ 2(1�Rþ� tan α1), α1¼ 0 and from eqn. (4.15),

tan β3 ¼
1
�
¼ 2:5, and therefore, β3 ¼ 68:2°.

The velocity triangles are symmetrical, so that α2¼ β3. Also, θR¼ θN¼ α2¼ 68.2°; therefore

ζ ¼ 0.04�ð1þ 1.5� 0.6822Þ ¼ 0.0679,

1
ηts

¼ 1þ 2ζw2
3 þ c2x
2U2

¼ 1þ ζ�2sec 2β3 þ
1
2
�2

¼ 1þ �2ðζ sec 2β3 þ 0:5Þ
¼ 1þ 0:42 �ð0:0679� 2:69282 þ 0:5Þ
¼ 1þ 0:16�ð0:49235þ 0:5Þ,

Therefore,

ηts ¼ 0.863.
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FIGURE 4.9

Influence of Reaction on Total-to-Static Efficiency with Fixed Values of Stage Loading Factor
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This value appears to be close to the peak value of the efficiency curve ΔW/U2¼ 1.0, in Figure 4.9. Note that it
is almost expected that the peak total-to-static efficiency would be at a reaction of 50% for a stage loading of 1,
because this is where there is no inter-stage swirl; and thus for a fixed axial velocity, the exit kinetic energy will be
minimised. If the total-to-total efficiency was considered, this would not be greatly affected by the choice of reac-
tion. However, the maximum value of ηtt is found, in general, to decrease slightly as the stage loading factor
increases (see Section 4.12).

4.10 DIFFUSION WITHIN BLADE ROWS
Any diffusion of the flow through turbine blade rows is particularly undesirable and must, at the
design stage, be avoided at all costs. This is because the adverse pressure gradient (arising from
the flow diffusion), coupled with large amounts of fluid deflection (usual in turbine blade rows),
makes boundary-layer separation more than merely possible, with the result that large scale losses
arise. A compressor blade row, on the other hand, is designed to cause the fluid pressure to rise in
the direction of flow, i.e., an adverse pressure gradient. The magnitude of this gradient is strictly
controlled in a compressor, mainly by having a fairly limited amount of fluid deflection in each
blade row.

It was shown previously that negative values of reaction indicated diffusion of the rotor relative
velocity (i.e., for R< 0, w3<w2). A similar condition that holds for diffusion of the nozzle absolute
velocity is that, if R> 1, c2< c1.

If we consider eqn. (4.13), this can be written as

R ¼ 1þ �

2
tan α3 � tan α2ð Þ.

Thus, when α3¼ α2 the reaction is unity (also c2¼ c3). The velocity diagram for R¼ 1 is shown in
Figure 4.10 with the same values of cx, U, and ΔW used for R¼ 0 and R¼ 1

2. It will be apparent
that, if R exceeds unity, then c2< c1 (i.e., nozzle flow diffusion).

Example 4.3
A single-stage gas turbine operates at its design condition with an axial absolute flow at entry and exit from the stage.
The absolute flow angle at nozzle exit is 70°. At stage entry the total pressure and temperature are 311 kPa and 850°C,

w2

w3

c3

c2

U �2

�3

5 5

FIGURE 4.10

Velocity Diagram for 100% Reaction Turbine Stage
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respectively. The exhaust static pressure is 100 kPa, the total-to-static efficiency is 0.87, and the mean blade speed is
500 m/s.

Assuming constant axial velocity through the stage, determine

(i) the specific work done;
(ii) the Mach number leaving the nozzle;
(iii) the axial velocity;
(iv) the total-to-total efficiency;
(v) the stage reaction.

Take Cp¼ 1.148 kJ/(kg°C) and γ¼ 1.33 for the gas.

Solution
(i) From eqn. (4.10), total-to-static efficiency is

ηts ¼
h01 � h03
h01 � h3ss

¼ ΔW

h01½1�ð p3=p01Þðγ�1Þ=γ�
.

Thus, the specific work is

ΔW ¼ ηtsCpΤ01½1�ð p3=p01Þðγ�1Þ=γ�
¼ 0:87� 1148� 1123� ½1�ð1=3:11Þ0:248�
¼ 276 kJ=kg.

(ii) At nozzle exit the Mach number is

M2 ¼ c2=ðγRT2Þ1=2,

and it is necessary to solve the velocity diagram to find c2 and, hence, to determine T2. As

cθ3 ¼ 0, ΔW ¼ Ucθ2,

cθ2 ¼ ΔW
U

¼ 276� 103

500
¼ 552 m=s,

c2 ¼ cθ2=sin α2 ¼ 588 m=s.

Referring to Figure 4.1, across the nozzle h01 ¼ h02 ¼ h2 þ 1
2 c

2
2, thus,

T2 ¼ T01� 1
2
c22=Cp ¼ 973 K.

Hence, M2¼ 0.97 with γR¼ (γ� 1)Cp.
(iii) The axial velocity, cx¼ c2 cos α2¼ 200 m/s.

(iv) ηtt ¼ ΔW=


h01 þ h3ss� 1

2 c
2
3

�
.

After some rearrangement,

1
ηtt

¼ 1
ηts

� c23
2ΔW

¼ 1
0:87

� 2002

2� 276� 103
¼ 1:0775.

Therefore, ηtt¼ 0.93.
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(v) Using eqn. (4.13b), the reaction is

R ¼ 1
2

cx=Uð Þ tan β3 � tan β2ð Þ.

From the velocity diagram, tan β3¼U/cx and tan β2¼ tan α2 � U/cx

R ¼ 1� 1
2

cx=Uð Þ tan α2 ¼ 1� 200� 0:2745=1000 ¼ 0:451.

Example 4.4
Verify the assumed value of total-to-static efficiency in the preceding example using Soderberg’s correlation
method. The average blade aspect ratio for the stage H/b¼ 5.0, the maximum blade thickness–chord ratio is
0.2, and the average Reynolds number is 105.

Solution
The approximation for total-to-static efficiency, eqn. (4.21b), is used and can be rewritten as

1
ηts

¼ 1þ ζ Rðw3=UÞ2 þ ζNðc2=UÞ2 þ ðcx=UÞ2
2ΔW=U2

.

The loss coefficients ζR and ζN, uncorrected for the effects of blade aspect ratio, are determined using
eqn. (3.50), which requires a knowledge of flow turning angle θ for each blade row.

For the nozzles, α1¼ 0 and α2¼ 70°, thus θN¼ 70°:

ζ 	N ¼ 0:04ð1þ 1:5� 0:72Þ ¼ 0:0694.

Correcting for the aspect ratio with eqn. (3.51a),

ζN1 ¼ 1.0694ð0.993þ 0.021=5Þ� 1 ¼ 0.0666.

For the rotor, tan β2¼ (cθ2�U ) /cx¼ (552� 500)/200¼ 0.26; therefore,

β2 ¼ 14.55°.

Therefore,
tan β3 ¼ U=cx ¼ 2:5,

and
β3 ¼ 68.2°.

Therefore,
εR ¼ β2 þ β3 ¼ 82.75°,

ζ 	R ¼ 0:04ð1þ 1:5� 0:82752Þ ¼ 0:0812.

Correcting for the aspect ratio with eqn. (3.51b)

ζ R1 ¼ 1:0812ð0:975þ 0:075=5Þ� 1 ¼ 0:0712.

4.10 Diffusion within Blade Rows 117



The velocity ratios are

w3

U

� �2
¼ 1þ cx

U

� �2
¼ 1:16,

c2
U

� �2
¼ 588

500

� �2

¼ 1:382;
cx
U

� �2
¼ 0:16

and the stage loading factor is

ΔW
U2

¼ cθ2
U

¼ 552
500

¼ 1:104.

Therefore,

1
ηts

¼ 1þ 0:0712� 1:16þ 0:0666� 1:382þ 0:16
2 � 1:104

¼ 1þ 0:1515

and

ηts ¼ 0:869.

This result is very close to the value assumed in the first example.
It is not too difficult to include the temperature ratio T3/T2 implicit in the more exact eqn. (4.21a) to see how

little effect the correction will have. To calculate T3,

T3 ¼ T01 �
ΔW þ 1

2
c23

Cp
¼ 1123� 276, 000þ 20, 000

1148
¼ 865 K.

T3=T2 ¼ 865=973 ¼ 0:89.

Therefore,

1
ηts

¼ 1þ 0:0712� 1:16þ 0:89� 0:0666� 1:382þ 0:16
2 � 1:104

¼ 1þ 0:14168,

and

ηts ¼ 0:872.

4.11 THE EFFICIENCY CORRELATION OF SMITH (1965)
All manufacturers of steam and gas turbines keep large databases of measured efficiency of axial-flow
turbine stages as functions of the duty parameters (flow coefficient, �, and stage loading coefficient, ψ).
Smith (1965), devised a widely used efficiency correlation, based upon data obtained from 70 Rolls-
Royce aircraft gas turbines, such as the Avon, Dart, Spey, Conway, and others, including the special
four-stage turbine test facility at Rolls-Royce, Derby, England. The data points and efficiency curves
found by him are shown in Figure 4.11. It is worth knowing that all stages tested were constant axial
velocity, the reactions were between 0.2 and 0.6 and the blade aspect ratio (blade height to chord
ratio) was relatively large, between 3 and 4. Another important factor to remember was that all
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efficiencies were corrected to eliminate tip leakage loss so that, in actual operation, the efficiencies
would be higher than those expected for the equivalent real turbines. The tip leakage losses (which
can be very large) were found by repeating tests with different amounts of tip clearance and extrapolat-
ing the results back to zero clearance to get the desired result.

Every turbine was tested over a range of pressure ratios to find its point of maximum efficiency and
to determine the corresponding values of ψ and �. Each point plotted in Figure 4.11 represents just one
test turbine at its best efficiency point and the value of its efficiency is shown adjacent to that point.
Confirmatory tests made by Kacker and Okapuu (1982) and others have shown the usefulness of the
chart in preliminary turbine design.

Turbine total-to-total efficiency
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Smith Chart for Turbine Stage Efficiency (Smith, 1965, with Permission from the Royal Aeronautical Society and
its Aeronautical Journal)
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Smith developed a simple theoretical analysis to explain the shape of the efficiency curves. He
argued that the losses in any blade row were proportional to the average absolute kinetic energy,
1
2 ðc21 þ c22Þ, for that row. For R¼ 0.5, Smith defined a factor fs as the ratio of the shaft work output
to the sum of the mean kinetic energies within the rotor and stator. Thus,

fs ¼ Δh0=ðc21 þ c22Þ ¼
Δh0=U2

ðc21=U2Þ þ ðc22=U2Þ . ð4:30Þ

Following the reasoning of Smith it is helpful to non-dimensionalise the velocity triangles for the com-
plete stage, assuming R¼ 0.5, as shown in Figure 4.12. It will be observed that tan α1¼ tan β2¼ (ψ – 1)/
2� and tan α2¼ tan β3¼ (ψ þ 1)/2�. Solving for the non-dimensionalised velocities in terms of ψ and �
we find

c2
U

¼ w3

U
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ψ þ 1

2

� �2
s

and

c1
U

¼ w2

U
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ψ� 1

2

� �2
s

.

Substituting into eqn. (4.30), we obtain

fs ¼ ψ

�2 þ ψþ1
2


 �2 þ �2 þ ψ� 1
2


 �2 ¼ 2ψ

4�2 þ ψ2 þ 1
. ð4:31Þ

From this expression the optimum stage work coefficient, ψ, for a given flow coefficient, �, can be found
by differentiating with respect to ψ:

∂fs
∂ψ

¼ 2ð4�2 �ψ2 þ 1Þ
ð4�2 þ ψ2 þ 1Þ ¼ 0.
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FIGURE 4.12

Dimensionless Velocity Triangles for a 50% Reaction Turbine Stage
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From this expression the optimum curve is easily derived:

ψopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 1

q
. ð4:32Þ

Figure 4.13 is a carpet plot of ψ versus � for various values of fs. Superimposed on this plot is the
locus of the optimum curve defined by eqn. (4.32). It has been noted that this curve tends to follow the
trend of the optimum efficiency of the Rolls-Royce efficiency correlation given in Figure 4.13. It has
been reported by Lewis (1996) that a more accurate representation of the optimum can be picked out
from the Rolls-Royce data as

ψopt.exp ¼ 0.65
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ 1

q
. ð4:33Þ

It is worth knowing that Lewis (1996) developed Smith’s method of analysis to include the blade aero-
dynamics and blade loss coefficients adding further insight into the method.

4.12 DESIGN POINT EFFICIENCY OF A TURBINE STAGE
The performance of a turbine stage in terms of its efficiency is calculated for several types of design,
i.e., 50% reaction, zero reaction, and zero exit flow angle, using the loss correlation method of Soderberg
described earlier. These are most usefully presented in the form of carpet plots of the stage loading
coefficient, ψ, and flow coefficient, �.

Total-to-Total Efficiency of 50% Reaction Stage
In a multi-stage turbine the total-to-total efficiency is the relevant performance criterion, the kinetic
energy at stage exit being recovered in the next stage. After the last stage of a multi-stage turbine
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FIGURE 4.13

Smith’s Kinetic Energy Coefficient fs and the Optimum Stage Loading, ψopt, Plotted against the Stage Loading
Coefficient and Flow Coefficient for a Turbine Stage
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or a single stage turbine, the kinetic energy in the exit flow would be recovered in a diffuser or used for
another purpose (e.g., as a contribution to the propulsive thrust).

From eqn. (4.20b), where it has already been assumed that c1¼ c3 and T3¼ T2, we have

1
ηtt

¼ 1þ ðζ Rw2
3 þ ζNc

2
2Þ

2ΔW
,

where ΔW¼ψU2 and, for a 50% reaction, w3¼ c2 and ζR¼ ζN¼ ζ:

w2
3 ¼ c2x sec

2 β3 ¼ c2xð1þ tan 2 β3Þ.

Therefore,

1
ηtt

¼ 1þ ζ�2

ψ
1þ tan 2 β3

 � ¼ 1þ ζ�2

ψ
1þ 1þ ψ

2�

� �2
" #

.

as tan β3¼ (ψ þ 1)/(2�) and tan β2¼ (ψ � 1)/(2�).
From these expressions the performance chart, shown in Figure 4.14, was derived for specified

values of ψ and �. From this chart it can be seen that the peak total-to-total efficiency, ηtt, is obtained
at very low values of � and ψ. As indicated in a survey by Kacker and Okapuu (1982), most aircraft gas
turbine designs will operate with flow coefficients in the range, 0.5 � � � 1.5, and values of stage
loading coefficient in the range, 0.8 � ψ � 2.8.
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Total-to-Total Efficiency of a Zero Reaction Stage
The degree of reaction will normally vary along the length of the blade depending upon the type of
design specified. The performance for R¼ 0 represents a limit, lower values of reaction are possible
but undesirable as they would give rise to large losses in efficiency. For R < 0, w3 < w2, which
means the relative flow decelerates across the rotor.

Referring to Figure 4.6, for zero reaction β2¼ β3, and from eqn. (4.15)

tan α2 ¼ 1=�þ tan β2 and tan α3 ¼ tan β3 � 1=�.

Also, ψ¼ΔW /U2¼�(tan α2 þ tan α3)¼�(tan β2 þ tan β3)¼ 2� tan β2; therefore,

tan β2 ¼
ψ
2�

.

Thus, using the preceding expressions,

tan α2 ¼ ðψ=2þ 1Þ=� and tan α3 ¼ ðψ=2� 1Þ=�.

From these expressions the flow angles can be calculated if values for ψ and � are specified. From an
inspection of the velocity diagram,

c2 ¼ cx sec α2, hence, c22 ¼ c2xð1þ tan 2α2Þ ¼ c2x ½1þ ðψ=2þ 1Þ2=�2�,

w3 ¼ cx sec β3, hence, w2
3 ¼ c2xð1þ tan 2 β3Þ ¼ c2x ½1þ ðψ=2�Þ2�.

Substituting these expressions into eqn. (4.20b),

1
ηtt

¼ 1þ ζ Rw
2
3 þ ζNc

2
2

2ψU2
,

1
ηtt

¼ 1þ 1
2ψ

ζ R �2 þ ψ
2

� �2� �
þ ζ N �2 þ 1þ ψ

2

� �2� �� �
.

The performance chart shown in Figure 4.15 was derived using these expressions. This is similar in
its general form to Figure 4.14 for a 50% reaction, with the highest efficiencies being obtained at the
lowest values of � and ψ, except that higher efficiencies are obtained at higher values of the stage
loading but at reduced values of the flow coefficient.

Total-to-Static Efficiency of Stage with Axial Velocity at Exit
A single stage axial turbine will have axial flow at exit and the most appropriate efficiency is usually
total to static. To calculate the performance, eqn. (4.21b) is used:

1
ηts

¼ 1þ ðζ Rw2
3 þ ζNc

2
2 þ c21Þ

2ΔW
¼ 1þ �2

2ψ
ζ R sec

2 β3 þ ζN sec 2 α2 þ 1

 �

.
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With axial flow at exit, c1¼ c3¼ cx, and from the velocity diagram, Figure 4.16,

tan β3 ¼ U=cx, tan β2 ¼ tan α2 � tan β3,

sec 2 β3 ¼ 1þ tan 2 β3 ¼ 1þ 1=�2,

sec 2 α2 ¼ 1þ tan 2 α2 ¼ 1þ ðψ=�Þ2,
Therefore,

1
ηts

¼ 1þ 1
2�

�
ζ Rð1þ �2Þ þ ζ Nðψ2 þ �2Þ þ �2

�
.

Specifying � and ψ, the unknown values of the loss coefficients, ζR and ζN, can be derived using Soder-
berg’s correlation, eqn. (3.50), in which

εN ¼ α2 ¼ tan�1ðψ=�Þ and εR ¼ β2 þ β3 ¼ tan�1ð1=�Þ þ tan�1½ðψ� 1�Þ=��.
From these expressions the performance chart, Figure 4.17, was derived.

An additional limitation is imposed on the performance chart because of the reaction, which must
remain greater than or, in the limit, equal to zero. From eqn. (4.14) for zero inter-stage swirl,

ψ ¼ 2ð1�RÞ.
Thus, at the limit, R¼ 0, and the stage loading coefficient, ψ¼ 2.
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4.13 STRESSES IN TURBINE ROTOR BLADES
Although this chapter is primarily concerned with the fluid mechanics and thermodynamics of turbines,
some consideration of stresses in rotor blades is needed as these can place restrictions on the allowable
blade height and annulus flow area, particularly in high temperature, high stress situations. Only a very
brief outline is attempted here of a very large subject, which is treated at much greater length by
Horlock (1966), in texts dealing with the mechanics of solids, e.g., Den Hartog (1952), Timoshenko
(1956), and in specialised discourses, e.g., Japiske (1986) and Smith (1986). The stresses in turbine
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Total-to-Static Efficiency Contours for a Stage with Axial Flow at Exit
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Velocity Diagram for a Turbine Stage with Axial Exit Flow
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blades arise from centrifugal loads, from gas bending loads and from vibrational effects caused by non-
constant gas loads. Although the centrifugal stress produces the biggest contribution to the total stress,
the vibrational stress is very significant and thought to be responsible for fairly common vibratory fati-
gue failures (Smith, 1986). The direct and simple approach to blade vibration is to “tune” the blades so
that resonance does not occur in the operating range of the turbine. This means obtaining a blade
design in which none of its natural frequencies coincides with any excitation frequency. The subject
is complex and interesting, but outside of the scope of the present text.

Centrifugal Stresses
Consider a blade rotating about an axis O as shown in Figure 4.18. For an element of the blade of
length dr at radius r, at a rotational speed Ω the elementary centrifugal load dFc is given by

dFc ¼ �Ω2rdm,

dr

Fc1dFc

Fc

o
�

r

FIGURE 4.18

Centrifugal Forces Acting on Rotor Blade Element
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where dm¼ ρmAdr and the negative sign accounts for the direction of the stress gradient (i.e., zero
stress at the blade tip to a maximum at the blade root),

dσc
ρm

¼ dFc

ρmA
¼ �Ω2rdr.

For blades with a constant cross-sectional area, we get

σc
ρm

¼ Ω2
Z rt

rh

rdr ¼U2
t

2
1� rh

rt

� �2
" #

. ð4:34aÞ

A rotor blade is usually tapered both in chord and in thickness from root to tip, such that the area
ratio At /Ah is between 1/3 and 1/4. For such a blade taper it is often assumed that the blade stress is
reduced to two thirds of the value obtained for an untapered blade. A blade stress taper factor can be
defined as

K ¼ stress at root of tapered blade
stress at root of untapered blade

.

Thus, for tapered blades

σc
ρm

¼ KU2
t

2
1� rh

rt

� �2
#
.

"
ð4:34bÞ

Values of the taper factor K quoted by Emmert (1950) are shown in Figure 4.19 for various taper
geometries.

Typical data for the allowable stresses of commonly used alloys are shown in Figure 4.20 for the
“1000 hour rupture life” limit with maximum stress allowed plotted as a function of blade temperature.
It can be seen that, in the temperature range 900–1100 K, nickel or cobalt alloys are likely to be suit-
able and for temperatures up to about 1300 K molybdenum alloys would be needed.
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Effect of Tapering on Centrifugal Stress at Blade Root (Adapted from Emmert, 1950)
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Further detailed information on one of the many alloys used for gas turbines blades is shown in
Figure 4.21. This material is Inconel, a nickel-based alloy containing 13% chromium, 6% iron, with
a little manganese, silicon, and copper. Figure 4.21 shows the influence of the “rupture life” and
also the “percentage creep,” which is the elongation strain at the allowable stress and temperature
of the blade. To enable operation at high temperatures and for long life of the blades, the creep strength
criterion is the one usually applied by designers.

An estimate of the average rotor blade temperature Tb can be made using the approximation

Tb ¼ T2 þ 0:85w2
2=ð2CpÞ, ð4:35Þ

i.e., 85% temperature recovery of the inlet relative kinetic energy.

Example 4.5
Combustion gases enter the first stage of a gas turbine at a stagnation temperature and pressure of 1200 K and 4.0 bar.
The rotor blade tip diameter is 0.75 m, the blade height is 0.12 m, and the shaft speed is 10,500 rev/min. At the mean
radius the stage operates with a reaction of 50%, a flow coefficient of 0.7, and a stage loading coefficient of 2.5.

Determine

(i) the relative and absolute flow angles for the stage;
(ii) the velocity at nozzle exit;
(iii) the static temperature and pressure at nozzle exit assuming a nozzle efficiency of 0.96 and the mass flow;
(iv) the rotor blade root stress assuming the blade is tapered with a stress taper factor K of 2/3 and the blade mate-

rial density is 8000 kg/m2;
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Maximum Allowable Stress for Various Alloys (1000 Hour Rupture Life) (Adapted from Freeman, 1955)
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(v) the approximate mean blade temperature;
(vi) taking only the centrifugal stress into account suggest a suitable alloy from the information provided that

could be used to withstand 1000 h of operation.

Solution
(i) The stage loading is

ψ ¼ Δh0=U
2 ¼ ðwθ3 þ wθ2Þ=U ¼ �ðtan β3 þ tan β2Þ.

From eqn. (4.13b) the reaction is
R ¼ � ðtan β3 � tan β2Þ=2.

Adding and subtracting these two expressions, we get

tan β3 ¼ ðψ=2þ RÞ=� and tan β2 ¼ ðψ=2�RÞ=�.
Substituting values of ψ, �, and R into the preceding equations, we obtain

β3 ¼ 68.2°, β2 ¼ 46.98°,

and for similar triangles (i.e., 50% reaction),

α2 ¼ β3 and α3 ¼ β2.
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Properties of Inconel 713 Cast Alloy (Adapted from Balje, 1981)
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(ii) At the mean radius, rm¼ (0.75� 0.12)/2 ¼ 0.315 m, the blade speed is Um¼Ωrm¼ (10,500/30) � π �
0.315¼ 1099.6 � 0.315¼ 346.36 m/s. The axial velocity cx¼�Um¼ 0.5 � 346.36¼ 242.45 m/s and the
velocity of the gas at nozzle exit is c2¼ cx/cos α2¼ 242.45/cos 68.2¼ 652.86 m/s.

(iii) To determine the conditions at nozzle exit, we have

T2 ¼ T02 � 1
2
c22=Cp ¼ 1200� 652.862= 2� 1160ð Þ ¼ 1016.3K.

The nozzle efficiency is

ηN ¼ h01 � h2
h01 � h2s

¼ 1� T2=T01

1�ðp2=p01Þðγ�1Þ=γ ,

Therefore,

p2
p01

� �ðγ�1Þ=γ
¼ 1� 1� T2=T01

ηN
¼ 1� 1� 1016:3=1200ð Þ=0:96 ¼ 0:84052

and

p2 ¼ 4� 0.8400524.0303 ¼ 1.986 bar.

The mass flow is found from the continuity equation:

_m ¼ ρ2A2cx2 ¼ p2
RT2

� �
A2cx2;

therefore,

_m ¼ 1:986� 105

287:8� 1016:3

� �
� 0:2375� 242:45 ¼ 39.1 kg=s.

(iv) For a tapered blade, eqn. (4.34b) gives

σc
ρm

¼ 2
3
� 412.32

2
1� 0:51

0:75

� �2
" #

¼ 30463.5 m2=s2,

where Ut¼ 1099.6 � 0.375¼ 412.3 m/s.
The density of the blade material is taken to be 8000 kg/m3 and so the root stress is

σc ¼ 8000� 30463.5 ¼ 2.437� 108 N=m2 ¼ 243.7 MPa.

(v) The approximate average mean blade temperature is

Tb ¼ 1016.3þ 0.85�ð242.45=cos 46.975Þ2=ð2� 1160Þ ¼ 1016.3þ 46.26 ¼ 1062.6K.

(vi) The data in Figure 4.20 suggest that, for this moderate root stress, cobalt or nickel alloys would not withstand
a lifespan of 1000 h to rupture and the use of molybdenum would be necessary. However, it would be neces-
sary to take account of bending and vibratory stresses and the decision about the choice of a suitable blade
material would be decided on the outcome of these calculations.
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Inspection of the data for Inconel 713 cast alloy, Figure 4.21, suggests that it might be a better choice of
blade material as the temperature–stress point of the preceding calculation is to the left of the line marked creep
strain of 0.2% in 1000 h. Again, account must be taken of the additional stresses due to bending and vibration.

Design is a process of trial and error; changes in the values of some of the parameters can lead to a more
viable solution. In this case (with bending and vibrational stresses included) it might be necessary to reduce
one or more of the values chosen, e.g.,

the rotational speed;
the inlet stagnation temperature;
the flow area.

Note: The combination of values for ψ and � at R¼ 0.5 used in this example was selected from data given
by Wilson (1987) and corresponds to an optimum total-to-total efficiency of 91.9%.

4.14 TURBINE BLADE COOLING
In the gas turbine industry there has been a continuing trend towards higher turbine inlet temperatures,
to give increased specific thrust (thrust per unit air mass flow) and to allow the specific fuel consump-
tion to be reduced. The highest allowable gas temperature at entry to a turbine with uncooled blades is
1000°C while, with a sophisticated blade cooling system, gas temperatures up to about 1800°C are
possible, depending on the nature of the cooling system. Such high temperatures are well in excess
of the melting point of the leading nickel-based alloys from which the blades are cast.

Various types of cooling system for gas turbines have been considered in the past and a number of
these are now in use. In the Rolls-Royce Trent engines (source, Rolls-Royce (2005)) the HP turbine
blades, nozzle guide vanes, and seal segments are cooled internally and externally using cooling air
from the final stage of the HP compressor. This cooling air is itself at a temperature of over 700°C
and at a pressure of 3.8 MPa. The hot gas stream at the turbine inlet is at a pressure of over
3.6 MPa so the pressure margin is quite small and maintaining that margin is critical to the lifespan
of the engine. Figure 4.22 illustrates a high pressure turbine rotor blade, sectioned to show the intricate
labyrinth of passages through which the cooling air passes before part of it is vented to the blade sur-
face via the rows of tiny holes along and around the hottest areas of the blade. Ideally, the air emerges
with little velocity and forms a film of cool air around the blade surface (hence, the term film cooling),
insulating it from the hot gases. This type of cooling system enables turbine entry temperatures up to
1800 K to be used. Figure. 4.23 shows the way the cooling air is used to cool HP nozzle guide vanes in
a modern jet engine.

A rising thermodynamic penalty is incurred with blade cooling systems as the turbine entry tempera-
ture rises, e.g., energy must be supplied to pressurise the air bled off from the compressor. Figure 4.24 is
taken fromWilde (1977) showing how the net turbine efficiency decreases with increasing turbine entry
temperature. Several in-service gas turbine engines for that era are included in the graph. Wilde did ques-
tion whether turbine entry temperatures greater than 1330°C could really be justified in turbofan engines
because of the effect on the internal aerodynamic efficiency and specific fuel consumption. However,
time and experience have since shown the important operational advantage of using blade cooling
systems.
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Cooled HP Turbine Rotor Blade Showing the Cooling Passages (Courtesy of Rolls-Royce plc)
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Cooling Arrangement for a Nozzle Guide Vane in a HP Turbine of a Modern Turbofan (Courtesy of Rolls-Royce plc)
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4.15 TURBINE FLOW CHARACTERISTICS
An accurate knowledge of the flow characteristics of a turbine is of considerable practical importance as,
for instance, in the matching of flows between a compressor and turbine of a jet engine. Figure 4.25, after
Mallinson and Lewis (1948), shows a comparison of typical characteristics for one, two, and three stages
plotted as turbine overall pressure ratio p0e /p01 against a mass flow coefficient _mð ffiffiffiffiffiffiffi

T01
p Þ=p01. There is a

noticeable tendency for the characteristic to become more ellipsoidal as the number of stages is increased.
At a given pressure ratio the mass flow coefficient, or “swallowing capacity,” tends to decrease with the
addition of further stages to the turbine. One of the earliest attempts to assess the flow variation of a multi-
stage turbine is credited to Stodola (1945), who formulated the much used “ellipse law.” The curve
labelled multi-stage in Figure 4.25 is in agreement with the “ellipse law” expression

_mð ffiffiffiffiffiffiffi
T01

p Þ=p01 ¼ k½1�ð p0e=p01Þ2�1=2, ð4:36Þ

where k is a constant.
This expression has been used for many years in steam turbine practice, but an accurate estimate of

the variation in swallowing capacity with pressure ratio is of even greater importance in gas turbine
technology. Whereas, the average condensing steam turbine, even at part-load, operates at very high
pressure ratios, some gas turbines may work at rather low pressure ratios, making flow matching
with a compressor a more difficult problem.
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Note that, when the pressure ratio across a single stage turbine exceeds about 2, the turbine stator
blades choke and the flow capacity becomes constant. Beyond this point the turbine behaves much the
same as a choked nozzle, and the performance is fairly independent of the turbine rotational speed. For
multi-stage turbines the choking pressure ratio increases as more stages are added.

Flow Characteristics of a Multi-stage Turbine
Several derivations of the ellipse law are available in the literature. The derivation given here is a slightly
amplified version of the proof given by Horlock (1958). A more general method has been given by Egli
(1936), which takes into consideration the effects when operating outside the normal low loss region of
the blade rows.

Consider a turbine comprising a large number of normal stages, each of 50% reaction; then, referring
to the velocity diagram of Figure 4.26(a), c1¼ c3¼w2 and c2¼w3. If the blade speed is maintained
constant and the mass flow is reduced, the fluid angles at exit from the rotor (β3) and nozzles (α2) will
remain constant and the velocity diagram then assumes the form shown in Figure 4.26(b). The turbine,
if operated in thismanner, will be of low efficiency, as the fluid direction at inlet to each blade row is likely
to produce a negative incidence stall. To maintain high efficiency the fluid inlet angles must remain fairly
close to the design values. It is therefore assumed that the turbine operates at its highest efficiency at all
off-design conditions and, by implication, the blade speed is changed in direct proportion to the axial
velocity. The velocity triangles are similar at off-design flows but of different scale.

Now the work done by unit mass of fluid through one stage is U(cθ2 þ cθ3) so that, assuming a
perfect gas,

CpΔT0 ¼ CpΔT ¼ Ucx ðtan α2 þ tan α3Þ,
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Turbine Flow Characteristics (after Mallinson and Lewis, 1948)
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and therefore,

ΔT µ c2x .

Denoting design conditions by subscript d, then

ΔT
ΔTd

¼ cx
cxd

� �2

ð4:37Þ

for equal values of cx /U.
From the continuity equation, at off-design, _m ¼ ρAxcx ¼ ρ1Ax1cx1, and at design, _md ¼ ρdAxcxd ¼

ρ1Ax1cx1; hence,
cx
cxd

¼ ρd
ρ

cx1
cx1d

¼ ρd
ρ

_m

_md
. ð4:38Þ

Consistent with the assumed mode of turbine operation, the polytropic efficiency is taken to be
constant at off-design conditions and, from eqn. (1.50), the relationship between temperature and pres-
sure is, therefore,

T=pηpðγ�1Þ=γ ¼ constant.

Combined with p/ρ¼RT the above expression gives, on eliminating p, ρ/Tn¼ constant, hence,

ρ
ρd

¼ T

Td

� �n

, ð4:39Þ

where n¼ γ/[ηp(γ� 1)]� 1.
For an infinitesimal temperature drop eqn. (4.37) combined with eqns. (4.38) and (4.39) gives, with

little error,

dT
dTd

¼ cx
cxd

� �2

¼ Td
T

� �2n _m

_md

� �2

. ð4:40Þ
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FIGURE 4.26

Change in Turbine Stage Velocity Diagram with Mass Flow at Constant Blade Speed
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Integrating eqn. (4.40),

T2nþ1 ¼ _m

_md

� �2

T2nþ1
d þ K,

where K is an arbitrary constant.
To establish a value for K it is noted that if the turbine entry temperature is constant Td¼ T1 and

T¼ T1 also. Thus, K ¼ ½1þ ð _m= _mdÞ2�T2nþ1
1 and

T

T1

� �2nþ 1

� 1 ¼ _m

_md

� �2 Td
T1

� �2nþ 1

� 1

" #
. ð4:41Þ

Equation (4.41) can be rewritten in terms of pressure ratio since T=T1 ¼ ðp=pIÞηpðγ�1Þ=γ. As 2nþ 1¼
2γ/ [ηp(γ� 1)]� 1, then

_m

_md
¼ 1�ð p=p1Þ2�ηpðγ�1Þ=γ

1�ð pd=p1Þ2�ηpðγ�1Þ=γ

( )1=2

. ð4:42aÞ

With ηp¼ 0.9 and γ¼ 1.3 the pressure ratio index is about 1.8; thus, the approximation is often used:

_m

_md
¼ 1�ð p=p1Þ2

1�ð pd=p1Þ2
( )1=2

, ð4:42bÞ

which is the ellipse law of a multi-stage turbine.
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PROBLEMS

1. Show, for an axial flow turbine stage, that the relative stagnation enthalpy across the rotor row
does not change. Draw an enthalpy–entropy diagram for the stage labelling all salient points.
Stage reaction for a turbine is defined as the ratio of the static enthalpy drop in the rotor to that
in the stage. Derive expressions for the reaction in terms of the flow angles and draw velocity
triangles for reactions of 0.0, 0.5 and 1.0.
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2. (i) An axial flow turbine operating with an overall stagnation pressure of 8 to 1 has a polytropic
efficiency of 0.85. Determine the total-to-total efficiency of the turbine.

(ii) If the exhaust Mach number of the turbine is 0.3, determine the total-to-static efficiency.
(iii) If, in addition, the exhaust velocity of the turbine is 160 m/s, determine the inlet total

temperature.

Assume for the gas that CP¼ 1.175 kJ/(kg K) and R¼ 0.287 kJ/(kg K).

3. The mean blade radii of the rotor of a mixed flow turbine are 0.3 m at inlet and 0.1 m at outlet.
The rotor rotates at 20,000 rev/min and the turbine is required to produce 430 kW. The flow
velocity at nozzle exit is 700 m/s and the flow direction is at 70° to the meridional plane. Deter-
mine the absolute and relative flow angles and the absolute exit velocity if the gas flow is 1 kg/s
and the velocity of the through-flow is constant through the rotor.

4. In a Parson’s reaction turbine the rotor blades are similar to the stator blades but with the angles
measured in the opposite direction. The efflux angle relative to each row of blades is 70° from
the axial direction, the exit velocity of steam from the stator blades is 160m/s, the blade speed is
152.5 m/s, and the axial velocity is constant. Determine the specific work done by the steam per
stage. A turbine of 80% internal efficiency consists of 10 such stages as just described and
receives steam from the stop valve at 1.5 MPa and 300°C. Determine, with the aid of a Mollier
chart, the condition of the steam at outlet from the last stage.

5. Values of pressure (kPa) measured at various stations of a zero reaction gas turbine stage, all at
the mean blade height, are shown in the table that follows:

Stagnation pressure Static pressure

Nozzle entry 414 Nozzle exit 207

Nozzle exit 400 Rotor exit 200

The mean blade speed is 291 m/s, inlet stagnation temperature 1100 K, and the flow angle at
nozzle exit is 70° measured from the axial direction. Assuming the magnitude and direction
of the velocities at entry and exit of the stage are the same, determine the total-to-total efficiency
of the stage. Assume a perfect gas with Cp¼ 1.148 kJ/(kg °C) and γ¼ 1.333.

6. In a certain axial flow turbine stage the axial velocity cx is constant. The absolute velocities enter-
ing and leaving the stage are in the axial direction. If the flow coefficient cx /U is 0.6 and the gas
leaves the stator blades at 68.2° from the axial direction, calculate

(i) the stage loading factor, ΔW/U2;
(ii) the flow angles relative to the rotor blades;
(iii) the degree of reaction;
(iv) the total-to-total and total-to-static efficiencies.

The Soderberg loss correlation, eqn. (3.50) should be used.

7. An axial flow gas turbine stage develops 3.36 MW at a mass flow rate of 27.2 kg/s. At the stage
entry the stagnation pressure and temperature are 772 kPa and 727°C, respectively. The static
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pressure at exit from the nozzle is 482 kPa and the corresponding absolute flow direction is 72°
to the axial direction. Assuming the axial velocity is constant across the stage and the gas enters
and leaves the stage without any absolute swirl velocity, determine

(i) the nozzle exit velocity;
(ii) the blade speed;
(iii) the total-to-static efficiency;
(iv) the stage reaction.

The Soderberg correlation for estimating blade row losses should be used. For the gas assume
that CP¼ 1.148 kJ/(kg K) and R¼ 0.287 kJ/(kg K).

8. Derive an approximate expression for the total-to-total efficiency of a turbine stage in terms of
the enthalpy loss coefficients for the stator and rotor when the absolute velocities at inlet and
outlet are not equal. A steam turbine stage of high hub–tip ratio is to receive steam at a stagnation
pressure and temperature of 1.5 MPa and 325°C, respectively. It is designed for a blade speed of
200 m/s and the following blade geometry was selected:

Nozzles Rotor

Inlet angle, degree 0 48

Outlet angle, degree 70.0 56.25

Space–chord ratio, s /l 0.42 —

Blade length–axial chord ratio, H/b 2.0 2.1

Maximum. thickness–axial chord 0.2 0.2

The deviation angle of the flow from the rotor row is known to be 3° on the evidence of cascade
tests at the design condition. In the absence of cascade data for the nozzle row, the designer
estimated the deviation angle from the approximation 0.19 θs/l where θ is the blade camber
in degrees. Assuming the incidence onto the nozzles is zero, the incidence onto the rotor
1.04°, and the axial velocity across the stage is constant, determine

(i) the axial velocity;
(ii) the stage reaction and loading factor;
(iii) the approximate total-to-total stage efficiency on the basis of Soderberg’s loss correlation,

assuming Reynolds number effects can be ignored;
(iv) by means of a large steam chart (Mollier diagram) the stagnation temperature and pressure at

stage exit.

9. (a) A single-stage axial flow turbine is to be designed for zero reaction without any absolute
swirl at rotor exit. At the nozzle inlet the stagnation pressure and temperature of the gas
are 424 kPa and 1100 K, respectively. The static pressure at the mean radius between the
nozzle row and rotor entry is 217 kPa and the nozzle exit flow angle is 70°. Sketch an appro-
priate Mollier diagram (or a T�s diagram) for this stage allowing for the effects of losses and
sketch the corresponding velocity diagram. Hence, using Soderberg’s correlation to calculate
blade row losses, determine for the mean radius
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(i) the nozzle exit velocity;
(ii) the blade speed;
(iii) the total-to-static efficiency.

(b)Verify for this turbine stage that the total-to-total efficiency is given by

1
ηtt

¼ 1
ηts

� �

2

� �2

,

where �¼ cx /U. Hence, determine the value of the total-to-total efficiency. Assume for the
gas that Cp¼ 1.15 kJ/(kg K) and γ¼ 1.333.

10. (a) Prove that the centrifugal stress at the root of an untapered blade attached to the drum of an
axial flow turbomachine is given by

σc ¼ πρmN
2Ax=1800,

where ρm¼ density of blade material, N¼ rotational speed of drum, in rpm and Ax¼ area of
the flow annulus.

(b) The preliminary design of an axial-flow gas turbine stage with stagnation conditions at stage
entry of p01¼ 400 kPa, T01¼ 850 K, is to be based upon the following data applicable to the
mean radius:

Flow angle at nozzle exit, α2¼ 63.8°;
Reaction, R¼ 0.5;
Flow coefficient, cx/Um¼ 0.6;
Static pressure at stage exit, p3¼ 200 kPa;
Estimated total-to-static efficiency, ηts¼ 0.85.

Assuming that the axial velocity is unchanged across the stage, determine

(i) the specific work done by the gas;
(ii) the blade speed;
(iii) the static temperature at stage exit.

(c) The blade material has a density of 7850 kg/m3 and the maximum allowable stress in the
rotor blade is 120 MPa. Taking into account only the centrifugal stress, assuming untapered
blades and constant axial velocity at all radii, determine for a mean flow rate of 15 kg/s
(i) the rotor speed (rev/min);
(ii) the mean diameter;
(iii) the hub–tip radius ratio.

For the gas assume that CP¼ 1050 J/(kg K) and R¼ 287 J/(kg K).

11. The design of a single-stage axial-flow turbine is to be based on constant axial velocity with axial
discharge from the rotor blades directly to the atmosphere. The following design values have
been specified:

Mass flow rate 16.0 kg/s
Initial stagnation temperature, T01 1100 K
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Initial stagnation pressure, p01 230 kN/m2

Density of blading material, ρm 7850 kg/m3

Maximum allowable centrifugal stress at blade root 1.7� 108N/m2

Nozzle profile loss coefficient, YP¼ (p01 � p02)/(p02 � p2) 0.06
Taper factor for blade stressing, K 0.75

In addition the following may be assumed:

Atmospheric pressure, p3 102 kPa
Ratio of specific heats, γ 1.333
Specific heat at constant pressure, CP 1150 J/(kgK)

In the design calculations values of the parameters at the mean radius are as follows:

Stage loading coefficient, ψ¼ΔW/U2 1.2
Flow coefficient, �¼ cx/U 0.35
Isentropic velocity ratio, U/c0 0.61

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðh01 � h3ssÞ

p
. Determine

(i) the velocity triangles at the mean radius;
(ii) the required annulus area (based on the density at the mean radius);
(iii) the maximum allowable rotational speed;
(iv) the blade tip speed and the hub–tip radius ratio.

12. Draw the velocity triangles for a repeating stage of an axial turbine that has a blade speed of
200 m/s, a constant axial velocity of 100 m/s, a stator exit angle of 65°, and no interstage
swirl. Assuming that the working fluid is air, calculate the stage loading coefficient and the
degree of reaction of the machine.

13. Determine the total-to-total efficiency of a low speed axial turbine stage that at the design
condition has a stator exit flow angle of 70°, zero swirl at inlet and exit, constant axial velocity,
and 50% reaction. Assume that the kinetic energy loss coefficient of both the stator blades and
the rotor blades is 0.09.
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CHAPTER

Axial-Flow Compressors and
Ducted Fans 5

A solemn, strange and mingled air, ’t was sad by fits, by starts was wild.
W. Collins, The Passions

5.1 INTRODUCTION
The idea of using a form of reversed turbine as an axial compressor is as old as the reaction turbine
itself. It is recorded by Stoney (1937) that Sir Charles Parsons obtained a patent for such an arrange-
ment as early as 1884. However, simply reversing a turbine for use as a compressor gives efficiencies
that are, according to Howell (1945a), less than 40% for machines of high pressure ratio. Parsons
actually built a number of these machines (circa 1900), with blading based upon improved propeller
sections. The machines were used for blast furnace work, operating with delivery pressures between
10 and 100 kPa. The efficiency attained by these early, low pressure compressors was about 55%;
the reason for this low efficiency is now attributed to blade stall. A high pressure ratio compressor
(550 kPa delivery pressure) was also built by Parsons but is reported by Stoney to have “run into
difficulties.” The design, comprising two axial compressors in series, was abandoned after many trials,
the flow having proved to be unstable (presumably due to compressor surge). As a result of low effi-
ciency, axial compressors were generally abandoned in favour of multi-stage centrifugal compressors
with their higher efficiency of 70–80%.

It was not until 1926 that any further development on axial compressors was undertaken, when
A. A. Griffith outlined the basic principles of his aerofoil theory of compressor and turbine design.
The subsequent history of the axial compressor is closely linked with that of the aircraft gas turbine
and has been recorded by Cox (1946) and Constant (1945). The work of the team under Griffith at
the Royal Aircraft Establishment, Farnborough, led to the conclusion (confirmed later by rig tests)
that efficiencies of at least 90% could be achieved for “small” stages, i.e., low pressure ratio stages.

The early difficulties associated with the development of axial-flow compressors stemmed mainly
from the fundamentally different nature of the flow process compared with that in axial-flow turbines.
Whereas in the axial turbine the flow relative to each blade row is accelerated, in axial compressors it
is decelerated. It is now widely known that although a fluid can be rapidly accelerated through a
passage and sustain a small or moderate loss in total pressure the same is not true for a rapid decelera-
tion. In the latter case large losses would arise as a result of severe stall caused by a large adverse
pressure gradient. So as to limit the total pressure losses during flow diffusion it is necessary for
the rate of deceleration (and turning) in the blade passages to be severely restricted. (Details of

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
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these restrictions are outlined in Chapter 3 in connection with the correlations of Lieblein and Howell.)
It is mainly because of these restrictions that axial compressors need to have many stages for a given
pressure ratio compared with an axial turbine, which needs only a few. Thus, the reversed turbine
experiment tried by Parsons was doomed to a low operating efficiency.

The performance of axial compressors depends on their usage category. Carchedi and Wood (1982)
described the design and development of a single-shaft 15-stage axial-flow compressor that provided a
12 to 1 pressure ratio at a mass flow of 27.3 kg/s for a 6 MW industrial gas turbine. The design was
based on subsonic flow and the compressor was fitted with variable stagger stator blades to control the
position of the low-speed surge line. In the field of aircraft gas turbines, however, the engine designer
is more concerned with maximising the work done per stage while retaining an acceptable level of
overall efficiency. Increased stage loading almost inevitably leads to some aerodynamic constraint.
This constraint is more severe at increased Mach number, when shock-induced boundary layer separa-
tion or increased losses can arise from poor diffusion of the flow. Wennerstrom (1990) outlined the
history of highly loaded axial-flow compressors with special emphasis on the importance of reducing
the number of stages and the ways that improved performance can be achieved. Since about 1970 a
significant and special change occurred with respect to one design feature of the axial compressor
and that was the introduction of low aspect ratio blading. It was not at all obvious why blading of
large chord would produce any performance advantage, especially as the trend was to try to make
engines more compact and lighter by using high aspect ratio blading. Wennerstrom (1989) reviewed
the increased usage of low aspect ratio blading in aircraft axial-flow compressors and reported on
the high loading capability, high efficiency, and good range obtained with this type of blading. One
early application was an axial-flow compressor that achieved a pressure ratio of 12.1 in only five
stages, with an isentropic efficiency of 81.9% and an 11% stall margin. The blade tip speed was
457 m/s and the flow rate per unit frontal area was 192.5 kg/s/m2. It was reported that the mean aspect
ratio ranged from a “high” of 1.2 in the first stage to less than 1.0 in the last three stages. A related later
development pursued by the U.S. Air Force was an alternative inlet stage with a rotor mean aspect ratio
of 1.32 that produced, at design, a pressure ratio of 1.912 with an isentropic efficiency of 85.4% and an
11% stall margin. A maximum efficiency of 90.9% was obtained at a pressure ratio of 1.804 and lower
rotational speed.

The flow within an axial-flow compressor is exceedingly complex, which is one reason why
research and development on compressors has proliferated over the years. In the following pages a
very simplified and basic study is made of this compressor so that the student can grasp the essentials.

5.2 MEAN-LINE ANALYSIS OF THE COMPRESSOR STAGE
Most of the analysis in this chapter is simplified (as it was for axial turbines) by considering the
variation in the flow along a mean radius through the machine. Significant spanwise variations are
neglected and the parameters determined using this type of analysis are those representative of average
conditions. This approach is appropriate for initial design and performance calculations of a compres-
sor and it is more accurate if the blade height is small compared with the mean radius. In addition, as
for axial turbines, the flow is assumed to be invariant in the circumferential direction, with negligible
spanwise (radial) velocities. The three-dimensional flow effects that occur within axial turbomachines
are considered within Chapter 6.
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To illustrate the layout of an axial compressor, Figure 5.1(a) shows a sectional drawing of the
three-shaft compressor system of the Rolls-Royce RB211 gas turbine engine. The very large
blade on the left is part of the fan rotor, which is on one shaft; this is followed by two six-stage
compressors of the “core” engine, each on its own shaft. A compressor stage is defined as a
rotor blade row followed by a stator blade row. Figure 5.1(b) shows some of the blades of the
first stage of the low-pressure compressor opened out into a plane array. The rotor blades (black)
are fixed to the rotor drum and the stator blades are fixed to the outer casing. The blades upstream
of the first rotor row are inlet guide vanes. These are not considered to be a part of the first stage and
are treated separately. Their function is quite different from the other blade rows since, by directing
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FIGURE 5.1

Axial-Flow Compressor and Blading Arrays: (a) Section of the Compression System of the RB211-535E4
Gas-Turbine Engine (courtesy of Rolls-Royce plc); (b) Development of the First Stage-Blade Rows and Inlet
Guide Vanes
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the flow away from the axial direction, they act to accelerate the flow rather than diffuse it.
Functionally, inlet guide vanes are the same as turbine nozzles; they increase the kinetic energy
of the flow at the expense of the pressure energy.

5.3 VELOCITY DIAGRAMS OF THE COMPRESSOR STAGE
The velocity diagrams for the stage are given in Figure 5.2 and the convention is adopted throughout
this chapter of accepting all angles and swirl velocities in this figure as positive. As for axial turbine
stages, a normal compressor stage is one where the absolute velocities and flow directions at stage
outlet are the same as at stage inlet. The flow from a previous stage (or from the guide vanes) has
a velocity c1 and direction α1; subtracting vectorially the blades speed U gives the inlet relative velocity
w1 at angle β1 (the axial direction is the datum for all angles). Relative to the blades of the rotor, the
flow is turned to the direction β2 at outlet with a relative velocity w2. By vectorially adding the blade
speed U onto w2 gives the absolute velocity from the rotor, c2 at angle α2. The stator blades deflect
the flow towards the axis and the exit velocity is c3 at angle α3. For the normal repeating stage in a
multi-stage compressor, c3¼ c1 and α3¼ α1. In Figure 5.2, it will be noticed that both the relative
velocity in the rotor and the absolute velocity in the stator decrease. As shown later in this chapter,
this diffusion of kinetic energy in the rotor and stator rows, significantly influences the stage efficiency.

Rotor blade row

U

U

U

Stator blade row

w1

w2

c1

c2

c3

cx1

cx2

cx3

c�1

c�2
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�1

�2 �2

�1

�3

FIGURE 5.2

Velocity Diagrams for a Compressor Stage
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5.4 THERMODYNAMICS OF THE COMPRESSOR STAGE
The specific work done by the rotor on the fluid, from the steady flow energy equation (assuming
adiabatic flow) and momentum equation is

ΔW ¼ _Wp= _m ¼ h02 � h01 ¼ Uðcθ2 � cθ1Þ. ð5:1Þ

In Chapter 1 it was shown that the Euler work equation can be written as h0,rel�U2¼ constant. For axial
machines where there is no radial shift of the streamlines across the rotor (i.e., U1¼U2), then h0,rel ¼
hþ 1

2w
2 is constant in the rotor. Thus,

h1 þ 1
2
w2
1 ¼ h2 þ 1

2
w2
2. ð5:2Þ

Across the stator, h0 is constant, and

h2 þ 1
2
c22 ¼ h3 þ 1

2
c23. ð5:3Þ

The compression process for the complete stage is represented on a Mollier diagram in Figure 5.3,
which is generalised to include the effects of irreversibility.
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Mollier Diagram for an Axial Compressor Stage
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5.5 STAGE LOSS RELATIONSHIPS AND EFFICIENCY
From eqns. (5.1) and (5.3) the actual work performed by the rotor on unit mass of fluid is ΔW ¼
h03 � h01. The reversible or minimum work required to attain the same final stagnation pressure as
the real process is

ΔWmin ¼ h03ss � h01 ¼ ðh03 � h01Þ� ðh03 � h03ssÞ.
Applying the equation for the second law of thermodynamics, Tds ¼ dh � dp/ρ, along the curve of
constant pressure, p ¼ p03, the approximation that Δh ¼ TΔs can be used such that

ΔWmin @ ΔW � T03Δsstage,

where Δsstage is the total entropy change through the stage such that Δsstage ¼ ΔsrotorþΔsstator. The
total-to-total efficiency of the compressor stage can therefore be written as

ηtt ¼
ΔWmin

ΔW
@ 1� T03Δsstage

h03 � h01
. ð5:4Þ

Note also that the total-to-static efficiency, as defined in Chapter 1, is given by

ηts ¼
h3ss � h01
h03 � h01

@
h03 � h01 �ðh03 � h3ssÞ

h03 � h01
@ 1� 0:5c23 þ T3Δsstage

h03 � h01
. ð5:5Þ

Therefore, to determine the efficiency of the stage, we need to determine the entropy changes through
the rotor and stator. This can be done by using the loss coefficients, Yp,rotor and Yp,stator. These loss
coefficients could be those determined by two-dimensional cascade tests or computational analysis
(see Chapter 3). The loss coefficients are defined as

Yp,rotor ¼ p01,rel � p02,rel
p01,rel � p1

and

Yp,stator ¼ p02 � p03
p02 � p2

. ð5:6Þ

Consider the process of a perfect gas passing through the rotor at constant relative stagnation
enthalpy, h01,rel. The second law of thermodynamics, Tds ¼ dh� dp/ρ, can be written for this
process as

T01,relΔsrotor @
Δp0,rotor
ρ01,rel

,

where
Δp0,rotor ¼ p01,rel � p02,rel. ð5:7Þ

Using the equation of state, p ¼ ρRT, this can be written as

Δsrotor @
RΔp0,rotor
p01,rel

¼ RYp,rotorð1� p1=p01,relÞ. ð5:8Þ

Note that the negative sign in the Tds equation disappears since the relative stagnation pressure is
decreasing through the rotor, giving an increase in entropy. Also note that a key advantage of using
entropy here is that it is independent of the frame of reference in which it is evaluated. The entropy
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change through the stator is found similarly to that for the rotor, and the total entropy change
through the stage is simply the sum of the two. In terms of the loss coefficients,

Δsstage ¼ Δsrotor þ Δsstator @ R½Yp,rotorð1� p1=p01,relÞ þ Yp,statorð1� p2=p02Þ�. ð5:9Þ
Hence, the total-to-total efficiency can be written as

ηtt @ 1� ðγ � 1Þ
γ

½Yp,rotorð1� p1=p01,relÞ þ Yp,statorð1� p2=p02Þ�
1�T01=T03

. ð5:10Þ

For a low speed machine, where the flow is incompressible as well as the density being constant,
it can be assumed that temperature changes throughout the stage are relatively small. Applying the
second law equation, Tds ¼ dh� dp/ρ, for the flow through the rotor and the stator then gives

TΔsrotor @
Δp0,rotor

ρ
¼ 1

2
w2
1Yp,rotor

and

TΔsstator @
Δp0,stator

ρ
¼ 1

2
c22Yp,stator. ð5:11Þ

Thus, by combining eqns. (5.4) and (5.11), the efficiency can be expressed for a low speed machine as

ηtt @ 1� TΔsstage
h03 � h01

¼ 1�Δp0,rotor þ Δp0,stator
ρðh03 � h01Þ ð5:12aÞ

or as

ηtt @ 1� 0:5ðw2
1Yp,rotor þ c22Yp,statorÞ

h03 � h01
. ð5:12bÞ

5.6 MEAN-LINE CALCULATION THROUGH A COMPRESSOR ROTOR
Calculation of the flow through a row of rotor blades is similar to that through a stationary cascade, as
described in Chapter 3. The minor complication is the use of relative rather than absolute properties.

Compressible Case
Consider the transonic compressor rotor shown in Figure 5.4. The velocity triangle at inlet has been
scaled so that it is a Mach number triangle, which is often a useful transformation for high speed stages.

If the conditions at inlet to the rotor are known, the non-dimensional mass flow rate at inlet can be
determined from compressible flow tables:

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT01,rel

p
A1n p01,rel

¼ _m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT01,rel

p
Hs cos β1 p01,rel

¼ QðM1,relÞ,

where A1n is the area normal to the flow at inlet, and the projected frontal area of the rotor (or annulus
area) is Hs and taken to be constant through the rotor. To find the conditions at exit, the
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non-dimensional mass flow rate at exit can be written in terms of the preceding, using the fact that
through a rotor blade with constant mean radius, T01,rel ¼ T02,rel:

QðM2,relÞ ¼
_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT02,rel

p
Hs cos β2 p02,rel

¼ QðM1,relÞ� p01,rel
p02,rel

� cos β1
cos β2

. ð5:13Þ

The ratio of relative total pressures can be determined from the rotor loss coefficient. Using the defini-
tion given in eqn. (5.6),

p02,rel
p01,rel

¼ 1� Yp,rotorð1� p1=p01,relÞ. ð5:14Þ

Once the exit relative Mach number and flow angle from the rotor blade are known, the other
properties at exit from the rotor can be determined (via compressible flow relations and the velocity
triangle) in order to fully specify the conditions at inlet to the stator. This is demonstrated later in
Example 5.1.

Incompressible Case
In the low speed, incompressible, case the equivalent calculations are more straightforward. The conti-
nuity equation reduces to

ρHs cos β1w1 ¼ ρHs cos β2w2 ⇒
w2

w1
¼ cos β1

cos β2
. ð5:15Þ

�2

�1

s.cos �1

s.cos �2

M2,rel

M2

M1

M1,rel
U

s

U/√(�RT1)

U/√(�RT2)

FIGURE 5.4

Mean-Line Flow through a High Speed Compressor Rotor
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The loss in relative total pressure through the rotor can be related to the loss coefficient, since
P01,rel ¼ P02,rel

1
2 ρw

2
1Yp,rotor. The static pressure at rotor exit can therefore be found as follows:

p2 ¼ p02,rel � 1
2
ρw2

2 ¼ p01,rel � 1
2
ρðw2

1Yp,rotor þ w2
2Þ. ð5:16Þ

Once the exit static pressure is known all other quantities at rotor exit can be found since the density
is fixed and the velocities are known.

Example 5.1
A single-stage transonic compressor operates with axial flow at inlet. The inlet absolute stagnation temperature is
288 K and the inlet absolute stagnation pressure is 101 kPa. The relative flow angle at inlet to the rotor is 45° and
the inlet relative Mach number is 0.9.

(i) Calculate the rotor blade speed and the inlet relative stagnation pressure.
(ii) The mean radius and the mass flow rate per unit annulus area are constant through the rotor. If the rotor loss

coefficient is 0.068 and the rotor exit relative Mach number is 0.5, find the rotor exit relative flow angle and
determine the static pressure ratio across the rotor.

(iii) Show that the absolute stagnation temperature and pressure at entry to the stator are 322 K and 145 kPa,
respectively. Determine the total-to-total isentropic efficiency of the compressor stage if the stagnation
pressure loss coefficient for the stator is 0.04.

Solution
(i) T01¼ 288 K, p01¼ 101 kPa. Given that the flow is axial at inlet, the absolute inlet Mach number can be

calculated (using the Mach number triangles shown in Figure 5.4):

M1 ¼ M1,rel cos 45° ¼ 0:9=
ffiffiffi
2

p
¼ 0:6364.

The inlet static temperature can be calculated from the inlet Mach number and inlet stagnation temperature as
follows:

T1 ¼ T01
�
1þ ðγ� 1ÞM2

1=2
��1

¼ 266:4 K.

The blade speed can then be determined from the inlet Mach number triangle and the fact that the relative
inflow angle is 45°:

U ¼ M1

ffiffiffiffiffiffiffiffiffiffi
γRT1

p
¼ 0:634�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287:15� 266:4

p
¼ 208:3 m=s.

The blade relative stagnation pressure can be found from compressible flow tables:

p01,rel ¼ p01 � p1=p01
p1=p01,rel

¼ 101� 0:7614
0:5913

¼ 130 kPa.

Note that p1¼ 101� 0.7614¼ 76.9 kPa.
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(ii) To relate the conditions across the rotor, first calculate the ratio of relative stagnation pressures:

YP ¼ 1� p02,rel=p01,rel
1� p1=p01,rel

;which implies that
p02,rel
p01,rel

¼ 1� YPð1� p1=p01,relÞ.

Therefore,

p02,rel
p01,rel

¼ 1� 0:068�ð1� 0:5913Þ ¼ 0:9722.

Applying continuity across the rotor,

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpT01,rel

p
Ax cos β1 p01,rel

¼ QðM1,relÞ ¼
_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cpT02,rel

p
Ax cos β2 p02,rel

� cos β2
cos β1

� p02,rel
p01,rel

.

Therefore,

cos β2 ¼
QðM1,relÞ
QðM2,relÞ � cos β1 �

p01,rel
p02,rel

.

This is true since T02,rel ¼ T01,rel (constant radius) and _m=Ax is constant. Putting in the values from the
question and using the compressible flow tables,

cos β2 ¼
Qð0:9Þ
Qð0:5Þ� cos 45°� 1

0:9722
¼ 1:2698

0:9561
� 1ffiffiffi

2
p � 1

0:9722
¼ 0:9659,

which implies that

β2 ¼ 15°ðangles areþveÞ

The static pressure ratio is then determined from the various ratios just derived:

p2
p1

¼ p2=p02,rel � p02,rel=p01,rel
p1=p01,rel

¼ 0:8430� 0:9722
0:5913

¼ 1:386.

Note that p2 ¼ 0.8430� 0.9722� 130¼ 106.6 kPa.
(iii) To calculate the conditions at stator inlet, apply the exit Mach number triangle from the rotor (as shown in

Figure 5.4) to convert the properties from the relative to absolute frame of reference. Using the compressible
flow tables, the static temperature and relative velocity at rotor exit can be found:

T2 ¼ T1 � T2=T02,rel
T1=T01,rel

¼ 266:4� 0:9524
0:8606

¼ 294:8 K since T02,rel ¼ T01,relð Þ

W2 ¼ M2,rel

ffiffiffiffiffiffiffiffiffiffi
γRT2

p
¼ 0:5�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287:15� 294:8

p
¼ 172:1m=s.

The velocity triangle can be used to find the absolute flow Mach number, which is needed to determine the
absolute stagnation quantities:

M2 ¼ c2ffiffiffiffiffiffiffiffiffiffi
γRT2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðW2 cos 15°Þ2 þ ðU�W2 sin 15°Þ2

q
ffiffiffiffiffiffiffiffiffiffi
γRT2

p ¼ 0:6778.
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It then follows that

T02 ¼ T2½1þ ðγ� 1ÞM2
2=2� ¼ 321:9 K

p02 ¼ p2
�
1þ ðγ� 1ÞM2

2=2
�γ=ðγ�1Þ

¼ 145 kPa.

The overall stage efficiency can now be calculated, using eqns. (5.4) and (5.8):

ηTT ¼ T02s � T01
T02 � T01

¼ 1� T02 � T02s
T02 � T01

¼ 1� T02ðΔsrotor þ ΔsstatorÞ=cp
T02 � T01

,

which implies that

Δsrotor ¼ RYP 1� p1
p01,rel

� �
¼ 287:15� 0:068�ð1� 76:9=130Þ ¼ 7:98 J=kgK

and

Δsstator ¼ RYP 1� p2
p02

� �
¼ 287:15� 0:04�ð1� 106:6=145Þ ¼ 3:04 J=kgK.

Thus,

ηTT ¼ 1� 321:9�ð7:98þ 3:04Þ=1005
321:9� 288

¼ 0:896.

This is a realistic efficiency value for a single-stage transonic compressor.

5.7 PRELIMINARY COMPRESSOR STAGE DESIGN
By fixing the stage loading ψ, the flow coefficient �, and the reaction R, the velocity triangles at the
design condition are specified. However, as well as fixing the velocity triangles such that the compres-
sor will achieve the required pressure rise with high efficiency, it is critically important for a compressor
that it operates with an adequate stability margin. As will be explained later in this chapter, if too much
pressure rise is demanded of a compressor it can become unstable and enter an unacceptable operating
regime (stall or surge). The choice of the velocity triangle parameters is therefore a compromise
between the best performance at the design condition and sufficient operating range.

Many axial compressors are multi-stage devices and, for simplicity, repeating stages are initially
assumed in which the velocity triangles for all stages are similar, the mean radius is constant, and
the axial velocity through the machine is constant. In such machines the flow coefficient, stage loading
and reaction are the same in every stage.

Note that this section only briefly covers the main preliminary design considerations and the asso-
ciated mean-line analysis. If further details are needed, a complete description of the compressor design
process can be found in Gallimore (1999).

Stage Loading
The blades of a compressor behave like diffusers, each row of rotors and stators slowing down the
local relative velocity (see Chapter 3). The amount of diffusion possible is limited, because if too
much diffusion is demanded, the flow will separate from the blades leading to compressor stall or
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surge. DeHaller (1953) proposed that the relative velocity at exit from a blade row should be at least
75% of the inlet relative velocity for satisfactory performance. This is equivalent to limiting the pres-
sure rise across each blade row and the maximum stage loading possible.

The stage loading ψ for a normal, or repeating, stage can be written as

ψ ¼ h03 � h01
U2

¼ Δcθ
U

¼ cθ2 � cθ1
U

¼ �ðtan α2 � tan α1Þ. ð5:17aÞ

Referring to the velocity triangles in Figure 5.2, it is clear that cθ1¼ U � wy1 and cθ2 ¼ U � wθ2. Thus,
this equation can be rewritten as

ψ ¼ �ðtan β1 � tan β2Þ, ð5:17bÞ
or,

ψ ¼ 1��ðtan α1 þ tan β2Þ, ð5:17cÞ
where � ¼ cx / U is the flow coefficient.

The choice of stage loading at the compressor design point is critical. A value that is too low will
lead to an excessive number of compressor stages to achieve a required pressure ratio. A value that is
too high will limit the operating range of the compressor and increase the number of aerofoils needed to
remove the risk of flow separation. As shown in Chapter 3, Lieblein’s diffusion factor, DF, is a useful
parameter for determining the blade pitch–chord ratio needed for acceptable performance. Based on
eqn. (3.32), this can be written for a compressor rotor as

DF ¼ 1�w2

w1

� �
þ Δcθ
2w1

s

l
. ð5:18Þ

A larger stage loading requires more flow turning Δcθ and, therefore, to maintain an acceptable
level of diffusion, the pitch–chord ratio of the blades must be reduced. This leads to a higher number
of aerofoils, which tends to increase profile losses due to the higher wetted area and also leads to pro-
blems at high Mach numbers since the increased number of aerofoils will increase the likelihood of
choking. For these reasons pitch-to-chord ratios are typically in the range 0.8 to 1.2 and the stage load-
ing is limited to values around 0.4. However, more advanced compressor designs for aero-engines,
where the need to reduce the number of stages is most pressing, may have higher stage loadings.

Flow Coefficient
From eqn (5.17b), ψ ¼ �(tan β1� tan β2), which shows that for a fixed stage loading, as the flow coef-
ficient increases, the flow turning required reduces. Hence, the diffusion through the blades is found to
reduce as flow coefficient increases. Equally, for a fixed level of diffusion, the stage loading can
increase as the flow coefficient rises. This suggests that a high flow coefficient is beneficial. In addi-
tion, higher values of flow coefficient correspond to higher inlet mass flow per unit area, which is a
significant advantage as it implies a smaller diameter machine for a given mass flow.

However, in axial compressors, stage performance is often limited by Mach number effects and, for
a fixed level of blade speed, high values of flow coefficient will lead to higher relative Mach number
and potentially greater losses from choking and shock waves. Another disadvantage of a higher flow
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coefficient design concerns the tolerance of the compressor to non-uniform inflow. Compressors need
to remain stable in the event of a disturbance in the inlet flow, and lower flow coefficient designs are
found to absorb fluctuations more readily than high flow coefficient designs. The reasons for this are
detailed in Smith (1958).

As a result of these considerations, typical values of � used in designs are between 0.4 and 0.8 and
often, for initial designs, 0.5 is chosen.

Reaction
The general definition of R for a compressor is the ratio of the rotor static enthalpy rise to the stage
static enthalpy rise:

R ¼ ðh2 � h1Þ=ðh3 � h1Þ. ð5:19Þ

From eqn. (5.2), h2 � h1 ¼ 1
2
w2
1 �w2

2


 �
. For normal stages (c1¼ c3), h3� h1¼ h03� h01¼U(cθ2� cθ1).

Substituting into eqn. (5.19),

R ¼ w2
1 �w2

2

2Uðcθ2 � cθ1Þ ¼
ðwθ1 þ wθ2Þðwθ1 �wθ2Þ

2Uðcθ2 � cθ1Þ , ð5:20Þ

where it is assumed that cx is constant across the stage. From Figure 5.2, cθ2 ¼ U � wθ2 and cθ1 ¼
U � wθ1 so that cθ2 � cθ1 ¼ wθ1 � wθ2. Thus,

R ¼ wθ1 þ wθ2ð Þ= 2Uð Þ ¼ 1
2
� tan β1 þ tan β2ð Þ. ð5:21Þ

An alternative useful expression for the reaction can be found in terms of the fluid outlet angles from
each blade row in a stage. With wθ1 ¼ U� cθ1, eqn. (5.21) gives

R ¼ 1
2
þ tan β2 � tan α1ð Þ�=2. ð5:22Þ

Eliminating β2 between eqs. (5.22) and (5.17c) gives an equation in ψ, �, and R and the inter-stage
swirl angle, α1

ψ ¼ 2ð1�R�� tan α1Þ. ð5:23Þ
Equation (5.23) is identical to eqn. (4.14) derived for turbines, except for the sign convention. This

equation shows that a higher reaction tends to reduce the stage loading, which is good for a compres-
sor. However, stages having 50% reaction are widely used as the adverse (retarding) pressure gradient
through the rotor rows and stator rows are equally shared. A 50% reaction also means that the rotor
and stator blades will have similar shapes. Parametric design studies, as presented in Cumpsty (1989),
suggest that the reaction is not such a critical parameter in determining compressor efficiency. In fact,
in many cases, the reaction is not a free design variable since it is determined by other factors. For
example, in a design where the stage loading and flow coefficients have already been chosen,
if the inlet swirl angle α1 is fixed, either by having an axial inlet flow or inlet guide vanes, then
the reaction must also be fixed (as indicated by eqn. 5.23).
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In advanced compressor designs, particularly in jet engine compressors, high reaction is common
and values between 0.5 and 0.8 are typical.

If R¼ 0.5, then α1¼ β2 from eqn. (5.22), and the velocity diagram is symmetrical. The stage
enthalpy rise is equally distributed between the rotor and stator rows.

If R > 0.5 then β2 > α1 and the velocity diagram is skewed to the right as shown in Figure 5.5(a).
The static enthalpy rise in the rotor exceeds that in the stator (this is also true for the static pressure rise).

If R < 0.5 then β2 < α1 and the velocity diagram is skewed to the left as indicated in Figure 5.5(b).
Clearly, the stator enthalpy (and pressure) rise exceeds that in the rotor.

Inter-Stage Swirl
From eqn. 5.23 it can be seen that introducing positive swirl between the stages helps reduce stage
loading. Positive swirl also reduces the relative inlet Mach number at inlet to the rotor. Therefore,
advanced multi-stage compressors, particularly those within gas turbines, will often have an inter-
stage swir1 angle of around 20 to 30 degrees.

Blade Aspect Ratio
Once ψ, �, and R are fixed at the design condition, the number of stages for a multi-stage compressor
can be determined (see Example 5.2). Given a mass flow and blade speed, the mean radius of the com-
pressor and the blade heights can also be calculated, using the calculations shown in Chapter 4. The
overall compressor length and the number of blades can then be estimated by choosing suitable values
of aspect ratio, H/l, for each blade row.

The choice of aspect ratio is important as this influences the blade losses and the stage stability
margin. Lower aspect ratios will tend to have greater losses due to increased wetted area and the

�2

�2

�1

�1

U

U
(b) R � 50%

�2� �1

(a) R � 50%
�2� �1

FIGURE 5.5

Asymmetry of Velocity Diagrams for Reactions Greater or Less than 50%
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build up of boundary layers. However, as shown in Koch (1997), lower aspect ratios tend to give
higher surge margin. This is why modern multi-stage compressors have lower aspect ratio values
than might be expected, and 1–2 is typical.

The choice of aspect ratio, combined with the blade height, fixes the blade chord, l. The pitch-
to-chord ratio, s /l, is determined by eqn (5.18) combined with a choice of an acceptable level of diffu-
sion factor, DF. With the blade chord known this then sets the number of blades in each row.

The overall compressor length depends on the axial gaps between blade rows. These will be set to
limit the vibration and noise generated by rotor–stator interaction and spaces between the rows of about
half an axial chord are typical.

5.8 SIMPLIFIED OFF-DESIGN PERFORMANCE
Horlock (1958) considered how the stage loading ψ behaves with varying flow coefficient � and how
this off-design performance is influenced by the choice of design conditions. Cascade data appears to
suggest that the fluid outlet angles β2 (for the rotor) and α1 (¼ α3) for the stator do not change appre-
ciably for a range of incidence up to the stall point. The simplification was made that, for a given com-
pressor stage,

tan α1 þ tan β2 ¼ t ¼ constant. ð5:24Þ
Inserting this expression into eqn. (5.17c) gives

ψ ¼ 1��t. ð5:25aÞ
An inspection of eqns. (5.24) and (5.25a) suggests that, provided t is positive, the stage stagnation

enthalpy rise, ψ, increases as the flow coefficient, �, is reduced, when running at constant rotational
speed. This is shown in Figure 5.6, where ψ is plotted against � for several values of t.

Writing ψ ¼ ψd and � ¼ �d for conditions at the design point, then

ψd ¼ 1��dt. ð5:25bÞ

The values of ψd and �d chosen for a particular stage design determines the value of t. It is instructive
to learn how the off-design test results obtained from a compressor stage compare with the simplified
performance model. The test results were obtained by Howell (1945) in the early days of axial-flow
compressor design but they are still valid for our purpose. Figure 5.7 shows the variation of the
stage loading coefficient ψ plotted against the flow coefficient �. The design point for this stage is actu-
ally at about � ¼ 0.80, which corresponds to the maximum efficiency condition. At this flow
coefficient the relative flow angles are β1¼ 45.8° and β2¼ 12.2°. From these data we can derive a
value for t ¼ tan α1þ tan β2. Now,

tan α1 ¼ 1=� � tan β1 ¼ 1=0:8 � tan 45:8° ¼ 0:2217.

Hence,

t ¼ tan α1 þ tan β1 ¼ 0:2217þ 0:2166 ¼ 0:4383.
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Substituting for t in eqn. (5.25b) the theoretical relationship is found:

ψ ¼ 1� 0:438�,

which is plotted in Figure 5.7. The comparison of the measured results with the theoretical result
clearly demonstrates that there is a fault in the assertion that the flow outlet angle from a blade row
does not change. Away from the design point flow the gradual increase in the stage deviation angle
has an increasing effect on the performance.
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In Figure 3.25 some early test results obtained by Ainley (1948) clearly show the variation of gas
outlet angles with change in incidence for two types of blade row (“impulse” and “reaction” blading).
Although these changes may appear small they will be sufficient to cause the deviation from the
straight line of eqn. (5.25a).

5.9 MULTI-STAGE COMPRESSOR PERFORMANCE
For preliminary design and analysis purposes, a multi-stage compressor is thought of as a series of
single-stage compressors, each performing as it would in isolation. However, to understand the perfor-
mance of a real machine, the behaviour of the overall system must be considered in more detail. This is
particularly important to understand the sources of loss in a compressor and the off-design operation, as
discussed later in this section.

Overall Pressure Ratio and Efficiency
It is possible to apply some of the earlier analysis to the determination of the overall pressure ratio of a
multi-stage compressor. A possible procedure requires the calculation of pressure and temperature
changes for a single stage, the stage exit conditions enabling the density at entry to the following
stage to be found. This calculation can be repeated for each stage in turn until the required final
conditions are satisfied. However, for compressors having identical stages it is more convenient to
apply a simple compressible flow analysis for all the stages. An illustrative example follows.

Example 5.2
A multi-stage axial compressor is required for compressing air at 293 K, through a pressure ratio of 5 to 1. Each
stage is to be a 50% reaction and the mean blade speed of 275 m/s, flow coefficient 0.5, and stage loading factor
0.3 are taken, for simplicity, as constant for all stages. Determine the flow angles and the number of stages required
if the polytropic efficiency is 88.8%. Take Cp ¼ 1.005 kJ/(kg°C) and γ ¼ 1.4 for air.

Solution
From eqn. (5.17b) the stage load factor can be written as

ψ ¼ �ðtan β1 � tan β2Þ.
From eqn. (5.21) the reaction is

R ¼ �

2
tan β1 þ tan β2ð Þ.

Solving for tan β1 and tan β2 gives

tan β1 ¼ ðRþ ψ=2Þ=�
and

tan β2 ¼ ðR�ψ=2Þ=�.
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Calculating β1 and β2 and observing for R ¼ 0.5 that the velocity diagram is symmetrical,

β1 ¼ α2 ¼ 52.45°

and

β2 ¼ α1 ¼ 35°.

Writing the stage load factor as ψ ¼ CpΔT0/U
2, the stage stagnation temperature rise is

ΔT0 ¼ ψU2=Cp ¼ 0.3� 2752=1005 ¼ 22.5°C.

It is reasonable here to take the stage efficiency as equal to the polytropic efficiency since the stage temperature
rise of an axial compressor is small. Denoting compressor inlet and outlet conditions by subscripts I and II, respec-
tively, from eqn. (1.50),

T0II
T0I

¼ 1þ nΔT0
T0I

¼ p0II
p0I

� �ðγ�1Þ=ηpγ
,

where n is the required number of stages. Thus,

n ¼ T01
ΔT0

p0II
p0I

� �ðγ�1Þ=ηpγ
� 1

" #
¼ 293

22.5
51=3.11�1
h i

¼ 8.86.

A suitable number of stages is therefore 9.
The overall efficiency is found from eqn. (1.53):

ηtt ¼
p0II
p0I

� �ðγ�1Þ=γ
�1

" #
p0II
p0I

� �ðγ�1Þ=ηpγ
� 1

" #
¼ 51=3:5� 1 51=3:11 � 1

h i
¼ 86:3%.

.ih,

Note that the total-to-total efficiency is significantly lower than the polytropic (or small stage) efficiency. This
difference is to be expected, as shown in Chapter 1. It is more usual in compressor design and analysis to quote
polytropic efficiencies, as these are independent of the pressure ratio of the multi-stage machine and therefore a
fairer way to compare the losses.

Three-Dimensional Flow Effects
Although the subject matter of this chapter is concerned primarily with the one-dimensional variation
in flow properties, the flow through a compressor is subject to many three-dimensional effects that
have a significant impact on the compressor performance. In particular, annulus boundary layers
build up on the compressor hub and casing. As well as leading to radial non-uniformity within the
flow in each stage, these end wall flows cause blockage that reduces the mass flow that can be passed
by the machine. In addition, these boundary layers interact with the flow within the blade passages,
including the boundary layers on the blade surfaces, leading to significant secondary flows throughout
the compressor and reduced efficiency.

Over the tips of rotor blades, a clearance gap is required. The flow through this clearance gap inter-
acts with the end wall flow and the flow in the passage. This adds to the blockage, reducing the overall
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flow capacity of the compressor stage and also, more seriously, reduces the stable operating range, see
Freeman (1985). The aim is always to minimise the clearance gap to improve the stability margin and
reduce the losses caused by leakage, but the minimum clearance is usually determined by manufactur-
ing and mechanical considerations.

Leakage flows are found not only in the rotor tip gaps. Stator blades are often cantilevered from
the compressor casing to minimise weight. This leads to a clearance gap at the stator hub. The
leakage flow that arises can help relieve high diffusion at the stator hub, but it also adds to blockage
and loss. In addition, leakage flows from the gaps and seals are present in the real geometry of
a compressor.

These secondary flows will typically contribute up to 50% of the losses within a compressor (the
other 50% coming from the blade profile loss that could be measured in a cascade). They lead to
reduced flow capacity due to the additional blockage, reduced work input, and more limited operating
range. They therefore need to be accounted for in the preliminary design by using average loss coeffi-
cients for the whole flow field and by factoring the velocity triangle parameters appropriately such that
they represent the average flow conditions.

Annulus Wall Boundary Layers
In multi-stage axial compressors the annulus wall boundary layers rapidly thicken through the first few
stages and the axial velocity profile becomes increasingly non-uniform. This effect is illustrated in
Figure 5.8, from the experimental results of Howell (1945), which shows axial velocity traverses
through a four-stage compressor. Over the central region of the blade, the axial velocity is higher
than the mean value based on the through-flow. The mean blade section (and most of the span)
will, therefore, do less work than is estimated from the velocity triangles based on the mean axial
velocity. In theory it would be expected that the tip and root sections would provide a compensatory
effect because of the low axial velocity in these regions. Due to stalling of these sections (and tip
leakage) no such work increase actually occurs, and the net result is that the work done by the
whole blade is below the design figure. Howell (1945) suggested that the stagnation enthalpy rise
across a stage could be expressed as

h03 � h01 ¼ λUðcθ2 � cθ1Þ, ð5:26Þ
where λ is a work done factor. For multi-stage compressors Howell recommended for λ a mean value of
0.86. Other workers have suggested that λ should be high at entry (0.96) where the annulus wall bound-
ary layers are thin, reducing progressively in the later stages of the compressor (0.85). Howell and
Bonham (1950) have given mean work done factors for compressors with varying numbers of stages,
as in Figure 5.9. For a four-stage compressor the value of λ would be 0.9, which would be applied to all
four stages.

Smith (1970) commented upon the rather pronounced deterioration of compressor performance
implied by the example given in Figure 5.8 and suggested that things are not as bad as suggested.
Figure 5.10(a) shows the axial velocity distributions through a 12-stage axial compressor. This does
illustrate that rapid changes in velocity distribution still occur in the first few stages, but that the profile
settles down to a fairly constant shape thereafter. This phenomenon has been referred to as ultimate
steady flow, which Horlock (2000) described as “a stage deeply embedded in the compressor where
an axial equilibrium state is reached.”
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Smith also provided curves of the spanwise variation in total temperature, Figure 5.10(b), which
shows the way losses increase from midpassage towards the annulus walls. An inspection of this figure
shows also that the excess total temperature near the end walls increases in magnitude and extent as the
flow passes through the compressor. Work on methods of predicting annulus wall boundary layers in
turbomachines and their effects on performance have been actively pursued in many countries. Horlock
(2000) reviewed several approaches to end wall blockage in axial compressors, i.e., Khalid et al.
(1999), Smith (1970), Horlock and Perkins (1974). It is worth noting that although these approaches
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can give estimates of the increase in blockage across a blade row they have now been superseded by
advanced computational methods that can simulate multiple stages of compressor with tip clearance
flows and other leakage paths.

Example 5.3
The last stage of a low speed axial flow compressor has a reaction of 50% at the design operating point. The design
was tested as a cascade of circular arc camber line blades at a space–chord ratio of 0.9, a blade inlet angle of 44.5°,
and a blade outlet angle of �0.5°. The nominal deflection of the cascade was measured as ε* = 30°. The blade
height–chord ratio is 2.0 and the work done factor can be taken as 0.86. At the operating condition of interest
the mean radius relative incidence (i � i*)/ε* is 0.4 and the corresponding deflection is 37.5°.

For this operating condition, determine

(i) the nominal incidence i*;
(ii) the inlet and outlet flow angles for the rotor;
(iii) the flow coefficient and stage loading factor.

In the solution given here the relative flow onto the rotor is considered. The notation used for flow angles is the
same as for Figure 5.2. For blade angles, β 0 is therefore used instead of α0 for the sake of consistency.
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Solution
(i) The nominal deviation is found using eqns. (3.43) and (3.44).With the camber θ ¼ β

0
1 � β

0
2 ¼ 44:5°�ð�0:5°Þ ¼

45° and the space–chord ratio, s/l ¼ 0.9, then

δ 	 ¼ ½0:23þ β	2=500� θðs=lÞ1=2

β 	
2 ¼ δ 	 þ β

0
2 ¼ δ	 � 0:5

Therefore,

δ 	 ¼ ½0.23þ ðδ 	 þ β
0
2Þ=500� � 45�ð0.9Þ1=2 ¼ ½0.229þ δ=500� � 42.69 ¼ 9.776þ 0.0854 δ 	;

hence,

δ 	 ¼ 10.69°

and

β 	
2 ¼ δ 	 þ β

0
2 ¼ 10:69� 0:5 ¼ 10:2°.

Using ε*¼ 30° the nominal incidence is

i	 ¼ β 	
2 þ ε	� β

0
1 ¼ 10.2þ 30� 44.5 ¼ �4.3°.

(ii) At the operating point i ¼ 0.4ε*þ i* ¼ 7.7°. Thus, the actual inlet flow angle is

β1 ¼ β
0
1 þ i ¼ 52:2°.

If the deflection ε ¼ 37.5° then the flow outlet angle is

β2 ¼ β1 � ε ¼ 14.7°.

(iii) From Figure 5.2,U¼ cx1(tan α1þ tan β1)¼ cx2(tan α2þ tan β2). For cx¼ constant across the stage and R¼ 0.5,

β1 ¼ α2 ¼ 52.2° and β2 ¼ α1 ¼ 14.7°

and the flow coefficient is

� ¼ cx
U

¼ 1
tan α1 þ tan β1

¼ 0.644.

The stage loading factor, ψ ¼ Δh0 /U
2 ¼ λ�(tan α2� tan α1) using eqn. (5.26). Thus, with λ ¼ 0.86,

ψ ¼ 0.568.

Stage Matching and Off-Design Operation
Suppose that, for a known operating condition, the performance of a multi-stage compressor is
required. Given the blade speed and inlet flow conditions, the performance of the first stage can be
determined using its single-stage performance characteristics. This enables the inlet conditions to
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the second stage to be determined, which can be used to determine its operating point and performance.
The process can be repeated throughout a multi-stage compressor to build up the overall performance
characteristics. This approach is known as stage stacking and various automated methods have been
developed for this purpose, e.g., Howell and Calvert (1978). These methods require single-stage char-
acteristics for each of the stages, which can be derived from measured single-stage characteristics or
from empirical correlations based on the mean-line analysis of the individual compressor stages, as
done by Wright and Miller (1991).

Estimation of the compressor surge margin is critical, but the prediction of when a multi-stage com-
pressor becomes unstable remains notoriously difficult. In the preliminary design phase, the perfor-
mance of similar machines can be used for calibration. For example, if a similar design of
compressor stage was found to stall when the diffusion factor exceeded 0.6, then this diffusion factor
value could be used to estimate where stall occurs in the new design. Within the stage stacking meth-
ods, the stall conditions of the individual stages are used to determine the stall margin of the overall
machine. However, this approach is problematic since in practice part of a compressor can be stalled
when overall the compressor operation is stable.

It is essential for multi-stage compressors to operate satisfactorily at part speed, for example during
startup or at low power settings. This situation is complicated in a multi-stage machine because differ-
ent stages in the compressor operate at different conditions simultaneously. The front stages of the
compressor will tend to operate towards stall at part speed because the mass flow rate is reduced
and the incidence of the flow onto the rotor blades increased. Rear stages, on the other hand, tend
to operate towards choke because the annulus area decrease that occurs through the compressor is spe-
cified for the design pressure ratio. At part speed, when the pressure ratio is low, the density in the rear
stages is also low, leading to high axial velocity relative to the design condition and possible choking.
This variation in operating point between the front and rear stages is described as a stage matching
problem. It can be relieved by bleeding off some air from the middle stages or by using variable stator
blades to correct the incidence onto the rotor blades in the front stages.

5.10 HIGH MACH NUMBER COMPRESSOR STAGES
As introduced in Chapter 3, the performance of compressor blades deteriorate once the relative inlet
Mach number exceeds about 0.7, because the relative Mach numbers within the blade passages exceeds
unity and extra losses are generated by shock waves and thicker boundary layers. Furthermore, high
Mach numbers reduce the operating range of a compressor because the flow becomes more sensitive
to changes in inlet angle.

However, there are two key advantages of high Mach number compressor stages. Firstly, high rela-
tive Mach numbers in a compressor imply a high mass flow per unit area, which leads to a more com-
pact (lower diameter) machine for a given mass flow. Secondly, high Mach numbers are caused by
high blade speeds, which enable greater work input to the flow and, hence, higher pressure ratios.
Using the definitions of stage loading and polytropic efficiency, the stage pressure ratio for a compres-
sor can be written as

p03
p01

¼ ψU2

CpT01
þ 1

� �γηp=ðγ�1Þ
. ð5:27Þ
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This shows that high stage pressure ratios can be achieved by high blade speeds combined with
high stage loading and efficiency. In modern transonic compressors, rotor inlet relative Mach numbers
of up to 1.7 are now used and single-stage pressure ratios greater than 2 are possible.

Calvert and Ginder (1999) detail the design of transonic compressor stages. They also describe the
evolution of modern transonic compressors and the major advances that have been made. Transonic
compressor stages are currently used within the single-stage fans of high bypass ratio jet engines, in
multi-stage fans within low bypass ratio engines and in the front stages of multi-stage compressors.
The fan of a civil jet engine is a particularly important component as it produces over 80% of the thrust
of a modern civil aircraft engine. High mass flow per unit area is needed to minimise the engine size,
and inlet relative Mach numbers are around 1.4 at the tip. Polytropic efficiencies above 90% are typical
and current design pressure ratios are between 1.6 and 1.8.

To alleviate the effects of high relative Mach numbers in transonic compressors, very thin blades
are used to reduce their blockage and typically the thickness-to-chord ratio of the blades is only a few
percent. In addition, to reduce the peak Mach number on the blade surface, the blades have very low
camber, with only a few degrees of turning. As a result, the blade sections towards the tip of a high
speed compressor resemble sharp, thin, and almost flat plates.

Figure 5.11 shows the flow pattern within a high speed compressor rotor blade with a supersonic
inlet relative Mach number. As the operating point of the compressor changes, the position of the pas-
sage shock varies. When the flow is fully choked, the shock moves rearward so that it is fully swal-
lowed within the blade passage. At lower mass flow rates, when the compressor is closer to stall, the
shock structure is expelled from the front of the blade passage. The operating point corresponding to
peak efficiency usually occurs when the shock wave is close to the blade leading edge.

It is interesting to understand how the shock pattern in Figure 5.11 leads to a very high work input
into the flow passing through the compressor. Consider the velocity triangles at inlet and exit from the
compressor rotor. Across the passage shock wave, as drawn in Figure 5.11, the flow does not turn
significantly, but the density rises sharply. Hence, the relative velocity downstream of the shock
will be much lower than upstream. Assuming the blade speed and relative flow angles are the same
at rotor inlet and exit, the velocity triangles show that the turning of the flow in the absolute frame
is purely a result of the flow slowing down in the relative frame. In contrast, a low speed compressor
rotor achieves a work input to the flow by turning the flow in both the relative and absolute frames of
reference. The shock wave leads to a rise in entropy in the flow, but it does not necessarily lead to
excessive losses, provided the flow on the blades does not separate. As proven by the high efficiencies
demonstrated in transonic compressors, a shock wave can be a highly efficient way to compress flow.

5.11 STALL AND SURGE PHENOMENA IN COMPRESSORS
A noticeable feature of any compressor performance map, such as Figure 2.4, is the surge line. This
line denotes the limit to stable operation. It can be reached by reducing the mass flow (with a throttle
valve) whilst the rotational speed is maintained constant.

When a compressor goes into surge the effects are usually quite dramatic. Generally, an increase in
noise level is experienced, indicative of a pulsation of the air flow and of mechanical vibration. Com-
monly, a small number of predominant frequencies are superimposed on a high background noise. The
lowest frequencies are usually associated with what is termed a Helmholtz-type of resonance of the
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flow through the machine, with the inlet and/or outlet volumes. The higher frequencies are known to be
due to rotating stall and are of the same order as the rotational speed of the impeller.

Rotating stall is another phenomenonof axial compressor flowand has been the subject ofmanydetailed
experimental and theoretical investigations. An early detailed survey of the phenomenon was given by
Emmons, Kronauer, and Rocket (1959). Briefly, when a blade row (usually the rotor of a compressor)
reaches the “stall point,” the blades, instead of all stalling together as might be expected, stall in separate
patches and these stall patches, moreover, travel around the compressor annulus (i.e., they rotate).

That stall patches must propagate from blade to blade has a simple physical explanation. Consider a
portion of a blade row, as illustrated in Figure 5.12, to be affected by a stall patch. This patch must
cause a partial obstruction to the flow that is deflected on both sides of it. Thus, the incidence of
the flow onto the blades on the right of the stall cell is reduced, but the incidence to the left is increased.
As these blades are already close to stalling, the net effect is for the stall patch to move to the left; the
motion is then self-sustaining.
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There is a strong practical reason for the wide interest in rotating stall. Stall patches travelling
around blade rows load and unload each blade at some frequency related to the speed and number
of the patches. This frequency may be close to a natural frequency of blade vibration and there is
clearly a need for accurate prediction of the conditions producing such a vibration. Several cases of
blade failure due to resonance induced by rotating stall have been reported, usually with serious con-
sequences to the whole compressor.

It is possible to distinguish between surge and propagating stall by the unsteadiness, or otherwise,
of the total mass flow. The characteristic of stall propagation is that the flow passing through the annu-
lus, summed over the whole area, is steady with time; the stall cells merely redistribute the flow over
the annulus. Surge, on the other hand, involves an axial oscillation of the total mass flow, a condition
highly detrimental to efficient compressor operation.

The point a compressor enters stall or surge still cannot be predicted reliably, even with the most
advanced computational methods. However, the understanding of the mechanisms leading to stall and
surge have been improved significantly through extensive research.

One early physical explanation of the breakdown of the flow in a compressor is given by Horlock
(1958). Figure 5.13 shows a constant rotor speed compressor characteristic (C) of pressure ratio plotted
against flow coefficient. A second set of curves (T1, T2, etc.) are superimposed on this figure showing
the pressure loss characteristics of the throttle for various fixed throttle positions. The intersection of
curves T with compressor curve C denotes the various operating points of the combination. A state of
flow stability exists if the throttle curves at the point of intersection have a greater (positive) slope than
the compressor curve. That this is so may be illustrated as follows. Consider the operating point at the
intersection of T2 with C. If a small reduction of flow should momentarily occur, the compressor will
produce a greater pressure rise and the throttle resistance will fall. The flow rate must, of necessity,
increase so that the original operating point is restored. A similar argument holds if the flow is tem-
porarily augmented, so that the flow is completely stable at this operating condition.

If, now, the operating point is at point U, unstable operation is possible. A small reduction in flow
will cause a greater reduction in compressor pressure ratio than the corresponding pressure ratio across
the throttle. As a consequence of the increased resistance of the throttle, the flow will decrease even
further and the operating point U is clearly unstable. By inference, neutral stability exists when the
slopes of the throttle pressure loss curves equal the compressor pressure rise curve.

FIGURE 5.12

Model Illustrating Mechanism of Stall Cell Propagation: Partial Blockage Due to Stall Patch Deflects Flow,
Increasing Incidence to the Left and Decreasing Incidence to the Right
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Tests on low pressure ratio compressors appear to substantiate this explanation of instability.
However, for high rotational speed multi-stage compressors this argument does not seem sufficient
to describe surging. With high speeds no stable operation appears possible on constant speed curves
of positive slope and surge appears to occur when this slope is zero or even a little negative.
A more complete understanding of surge in multi-stage compressors is possible only from a detailed
study of the individual stages’ performance and their interaction with one another.

Casing Treatment
It was discovered in the late 1960s that the stall of a compressor could be delayed to a lower mass flow
by a suitable treatment of the compressor casing. Given the right conditions this can be of great benefit
in extending the range of stall-free operation. Numerous investigations have since been carried out on
different types of casing configurations under widely varying flow conditions to demonstrate the range
of usefulness of the treatment.

Greitzer et al. (1979) observed that two types of stall could be found in a compressor blade row,
namely, “blade stall” and “wall stall.” Blade stall is, roughly speaking, a two-dimensional type of stall
where a significant part of the blade has a large wake leaving the blade suction surface. Wall stall is a
stall connected with the boundary layer on the outer casing. Figure 5.14 illustrates the two types of
stall. Greitzer et al. found that the response to casing treatment depended conspicuously upon the
type of stall encountered.

The influence of a grooved casing treatment on the stall margin of a model axial compressor rotor
was investigated experimentally. Two rotor builds of different blade solidities, σ (chord–space ratio),
but with all the other parameters identical were tested. Greitzer et al. emphasised that the motive behind
the use of different solidities was simply a convenient way to change the type of stall from a blade stall to a
wall stall and that the benefit of casing treatment was unrelated to the amount of solidity of the blade row.
The position of the casing treatment insert in relation to the rotor blade row is shown in Figure 5.15(a)
and the appearance of the grooved surface used is illustrated in Figure 5.15(b). The grooves, described
as “axial skewed” and extending over the middle 44% of the blade, have been used in a wide variety
of compressors.
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As predicted from their design study, the high solidity blading (σ = 2) resulted in the production of
a wall stall, while the low solidity (σ = 1) blading gave a blade stall. Figure 5.16 shows the results
obtained for the four conditions tested. The most important difference in performance is the change
in the stall point with and without the casing treatment. It can be seen that with the grooved casing
a substantial change in the range of � occurred with the high solidity blading. However, for the low
solidity blading there is only a marginal difference in range. The shape of the performance curve is also
significantly affected for the high solidity rotor blades, with a substantial increase in the peak pressure
rise brought about by the grooved casing treatment.

Casing treatment has not been widely adopted in the aircraft engine industry because of the efficiency
penalty that it often causes. Smith and Cumpsty (1984) made an extensive series of experimental investiga-
tions to try to discover the cause for this loss in compressor efficiency. At the simplest level it was realised
that the slots provide a route for fluid to pass from the pressure surface to the suction surface allowing a small
proportion of the flow to be recirculated. The approaching boundary layer fluid tends to have a high absolute
swirl and is, therefore, suitably orientated to enter the slots. Normally, with a smooth wall the high swirl
would cause energy to be wasted but, with the casing treatment, the flow entering the slot is turned and
reintroduced back into themain flownear the blade’s leading edgewith its absolute swirl direction reversed.
The re-entrant flow has, in effect, flowed upstream along the slot to a lower pressure region.

Control of Flow Instabilities
Important and dramatic advances have been made in recent years in the understanding and controlling of
surge and rotating stall. Both phenomena are now regarded as the mature forms of the natural oscillatory
modes of the compression system (seeMoore and Greizer, 1986). The flowmodel they considered predicts
that an initial disturbance starts with a very small amplitude but quickly grows into a large amplitude form.
Thus, the stability of the compressor is equivalent to the stability of these small amplitude waves that exist
just prior to stall or surge (Haynes, Hendricks, and Epstein, 1994). Only a few of themany paperswritten on
the understanding of these unstable flows and the application of control to suppress instability are cited here.
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Epstein, Ffowcs Williams, and Greitzer. (1989) first suggested that surge and rotating stall could be
prevented by using active feedback control to damp the hydrodynamic disturbances while they were
still of small amplitude. Active suppression of surge was subsequently demonstrated on a centrifugal
compressor by Ffowcs Williams and Huang (1989), also by Pinsley et al. (1991) and on an axial com-
pressor by Day (1993). Shortly after this Paduano et al. (1993) demonstrated active suppression of
rotating stall in a single-stage low speed axial compressor. By damping the small amplitude waves
rotating about the annulus prior to stall, they increased the stable flow range of the compressor by
25%. The control scheme adopted comprised a circumferential array of hot wires just upstream of
the compressor and a set of 12 individually actuated vanes upstream of the rotor used to generate
the rotating disturbance structure required for control. Haynes et al. (1994), using the same control
scheme as Paduano et al., actively stabilised a three-stage, low speed axial compressor and obtained
an 8% increase in the operating flow range. Gysling and Greitzer (1995) employed a different strategy
using aeromechanical feedback to suppress the onset of rotating stall in a low speed axial compressor.

Further methods of active and passive control to prevent stall or surge continue to be extensively
researched and new technologies, such as micro devices, are being applied to this purpose. However,
there is still very limited adoption of control within commercially available compressors and even cas-
ing treatment is used in only a few jet engine compressor designs. Further application of these tech-
nologies in the future will be realised only if their robustness and reliability can match that of
existing compressor components.

5.12 LOW SPEED DUCTED FANS
In essence, these widely used fans are simply single-stage compressors with a low pressure (and tempera-
ture) rise, so that much of the foregoing theory of this chapter is valid for this class of machine. However,
because of the high space–chord ratio used in many of these fans, a simplified theoretical approach based
on isolated aerofoil theory is often used. This method can be of use in the design of ventilating fans in
which aerodynamic interference between adjacent blades can be assumed negligible. Attempts have been
made to extend the scope of isolated aerofoil theory to less widely spaced blades by the introduction of an
interference factor; for instance, the ratio k of the lift force of a single blade in a cascade to the lift force of
a single isolated blade. As a guide to the degree of this interference, an exact mathematical solution
obtained by Weinig (1935) and used by Wislicenus (1947) for a row of thin flat plates is of value and
is shown in Figure 5.17. This illustrates the dependence of k on space–chord ratio for several stagger
angles. The rather pronounced effect of stagger for moderate space–chord ratios should be noted as
well as the asymptotic convergence of k towards unity for higher space–chord ratios.

Two simple types of axial-flow fan are shown in Figure 5.18 in which the inlet and outlet flows are
entirely axial. In the first type (a), a set of guide vanes provides a contra-swirl and the flow is restored
to the axial direction by the rotor. In the second type (b), the rotor imparts swirl in the direction of blade
motion and the flow is restored to the axial direction by the action of outlet straighteners (or outlet
guide vanes). The theory and design of both these types of fan have been investigated by Van Niekerk
(1958) who was able to formulate expressions for calculating the optimum sizes and fan speeds using
blade element theory.

Note that the analysis in this section uses cartesian (x and y) coordinates in order to be consistent
with the low-speed cascade analysis presented in Section 3.4.
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Lift and Drag Coefficients
For a low speed fan the stage loading factor may be expressed in terms of the lift and drag coefficients
for the rotor. From Figure 3.12, replacing αm with βm, the tangential blade force on the moving blades
per unit span is

Y ¼ L cos βm þ D sin βm ¼ L cos βm 1þ CD

CL
tan βm

� �
,

where tan βm ¼ 1
2 (tan β1þ tan β2).

Now CL ¼ L
1
2
ρw2

ml

� �
;

�
hence, substituting for L,

Y ¼ 1
2
ρc2x lCL sec βm 1þ tan βmCD=CLð Þ. ð5:28Þ

The work done by each moving blade per second is YU and is transferred to the fluid through one blade
passage during that period. Thus, YU ¼ ρscx(h03� h01).

Therefore, the stage loading factor may now be written

ψ ¼ h03 � h01
U2

¼ Y

ρscxU
. ð5:29Þ

Substituting eqn. (5.28) in eqn. (5.29) the final result is

ψ ¼ ð�=2Þ sec βmðl=sÞðCL þ CD tan βmÞ. ð5:30Þ
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5.12 Low Speed Ducted Fans 173



In Chapter 3, the approximate analysis indicated that maximum efficiency is obtained when the
mean flow angle is 45°. The corresponding optimum stage loading factor at βm ¼ 45° is

ψopt ¼ ð�=
ffiffiffi
2

p
ðl=sÞðCL þ CDÞ. ð5:31Þ

Since CD � CL in the normal low loss operating range, it is permissible to drop CD from eqn. (5.31).

5.13 BLADE ELEMENT THEORY
A blade element at a given radius can be defined as an aerofoil of vanishingly small span. In fan
design theory it is commonly assumed that each such element operates as a two-dimensional aerofoil,
behaving completely independently of conditions at any other radius. Now the forces impressed upon
the fluid by unit span of a single stationary blade have been considered in some detail already, in
Chapter 3. Considering an element of a rotor blade dr, at radius r, the elementary axial and tangential
forces, dX and dY, respectively, exerted on the fluid are, referring to Figure 3.12,
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Two Simple Types of Axial-Flow Fan and Their Associated Velocity Diagrams (after Van Niekerk, 1958)
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dX ¼ ðL sin βm �D cos βmÞdr, ð5:32Þ

dY ¼ ðL cos βm þ D sin βmÞdr, ð5:33Þ

where tan βm¼ 1
2_{tan β1þ tan β2} and L, D are the lift and drag on unit span of a blade.

Writing tan γ ¼ D/L ¼ CD/CL,

dX ¼ Lðsin βm � tan γ cos βmÞdr.

Introducing the lift coefficient CL ¼ L
1
2
ρw2

ml

� ��
for the rotor blade (cf. eqn. 3.23) into the preceding

expression and rearranging,

dX ¼ ρc2x lCLdr
2 cos 2βm

� sin ðβm � γÞ
cos γ

, ð5:34Þ
where cx ¼ wm cos βm.

The torque exerted by one blade element at radius r is rdY. If there are Z blades the elementary
torque is

dτ ¼ rZdY ¼ rZLðcos βm þ tan γ sin βmÞdr,
after using eqn. (5.33). Substituting for L and rearranging,

dτ ¼ ρc2x lZCLrdr
2 cos 2βm

� cosðβm � γÞ
cos γ

. ð5:35Þ

Now the work done by the rotor in unit time equals the product of the stagnation enthalpy rise and the
mass flow rate; for the elementary ring of area 2πrdr,

Ωdτ ¼ ðCpΔT0Þd _m, ð5:36Þ
where Ω is the rotor angular velocity and the element of mass flow, d _m ¼ ρcx2πrdr.

Substituting eqn. (5.35) into eqn. (5.36),

CpΔΤ0 ¼ CpΔΤ ¼ CL
UCxl cosðβm � γÞ
2s cos 2βm cos γ

, ð5:37Þ

where s ¼ 2πr/Z. Now the static temperature rise equals the stagnation temperature rise when the velo-
city is unchanged across the fan; this, in fact, is the case for both types of fan shown in Figure 5.18.

The increase in static pressure of the whole of the fluid crossing the rotor row may be found by
equating the total axial force on all the blade elements at radius r with the product of static pressure
rise and elementary area 2πrdr, or

ZdX ¼ ð p2 � p1Þ2πrdr.
Using eqn. (5.34) and rearranging,

p2 � p1 ¼ CL
ρc2x l sinðβm � γÞ
2s cos 2βm cos γ

. ð5:38Þ

Note that, so far, all these expressions are applicable to both types of fan shown in Figure 5.17.
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5.14 BLADE ELEMENT EFFICIENCY
Consider the fan type shown in Figure 5.18(a) fitted with guide vanes at inlet. The pressure rise across
this fan is equal to the rotor pressure rise, p2� p1, minus the drop in pressure across the guide vanes,
pi� p1. The ideal pressure rise across the fan is given by the product of density and CpΔT0. Fan
designers define a blade element efficiency as

ηb ¼ fð p2 � p1Þ� ð pi � p1Þg=ð ρCpΔT0Þ. ð5:39Þ
The drop in static pressure across the guide vanes, assuming frictionless flow for simplicity, is

pi � p1 ¼ 1
2
ρ c21 � c2x

 � ¼ 1

2
ρc2y1. ð5:40Þ

Now, since the change in swirl velocity across the rotor is equal and opposite to the swirl produced by
the guide vanes, the work done per unit mass flow, CpΔT0 is equal to Ucy1. Thus, the second term in
eqn. (5.39) is

ð pi � p1Þ=ðρCpΔT0Þ ¼ cy1=ð2UÞ. ð5:41Þ
Combining eqns. (5.37), (5.38), and (5.41) in eqn. (5.39) then,

ηb ¼ ðcx=UÞ tan ð βm � γÞ� cy1=ð2UÞ. ð5:42aÞ
The foregoing exercise can be repeated for the second type of fan having outlet straightening vanes,
and assuming frictionless flow through the “straighteners,” the rotor blade element efficiency becomes

ηb ¼ ðcx=UÞ tan ðβm � γ Þ þ cy2=ð2UÞ. ð5:42bÞ
Some justification for ignoring the losses occurring in the guide vanes is found by observing that the
ratio of guide vane pressure change to rotor pressure rise is normally small in ventilating fans. For
example, in the first type of fan,

pi � p1ð Þ= p2 � p1ð Þ¼_
_

1
2
ρc2y1

� �.
ρUcy1

 � ¼ cy1=2 Uð Þ,

the tangential velocity cy1 being rather small compared with the blade speed U.

5.15 LIFT COEFFICIENT OF A FAN AEROFOIL
For a specified blade element geometry, blade speed and lift–drag ratio the temperature and pressure
rises can be determined if the lift coefficient is known. An estimate of lift coefficient is most easily
obtained from two-dimensional aerofoil potential flow theory. Glauert (1959) showed, for isolated
aerofoils of small camber and thickness, that

CL ¼ 2π sin α, ð5:43aÞ
where α is the angle between the flow direction and line of zero lift of the aerofoil. For an isolated,
cambered aerofoil Wislicenus (1947) suggested that the zero lift line may be found by joining the trail-
ing edge point with the point of maximum camber, as depicted in Figure 5.19(a). For fan blades experi-
encing some interference effects from adjacent blades, the modified lift coefficient of a blade may be
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estimated by assuming that Weinig’s results for flat plates (Figure 5.17) are valid for the slightly
cambered, finite thickness blades, and

CL ¼ 2πk sin α. ð5:43bÞ
When the vanes overlap (as they may do at sections close to the hub), Wislicenus suggested that the
zero lift line may be obtained by the line connecting the trailing edge point with the maximum camber
of that portion of blade that is not overlapped, Figure 5.19(b).

The extension of both blade element theory and cascade data to the design of complete fans was
discussed in considerable detail by Wallis (1961).
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PROBLEMS
(Note: In questions 1–4, 6 and 8 take R ¼ 287 J/(kg°C) and γ ¼ 1.4.)

1. An axial flow compressor is required to deliver 50 kg/s of air at a stagnation pressure of 500 kPa. At
inlet to the first stage the stagnation pressure is 100 kPa and the stagnation temperature is 23°C.
The hub and tip diameters at this location are 0.436 m and 0.728 m. At the mean radius, which
is constant through all stages of the compressor, the reaction is 0.50 and the absolute air angle
at stator exit is 28.8° for all stages. The speed of the rotor is 8000 rev/min. Determine the number
of similar stages needed, assuming that the polytropic efficiency is 0.89 and that the axial velocity
at the mean radius is constant through the stages and equal to 1.05 times the average axial velocity.

2. Derive an expression for the degree of reaction of an axial compressor stage in terms of the flow
angles relative to the rotor and the flow coefficient. Data obtained from early cascade tests sug-
gested that the limit of efficient working of an axial-flow compressor stage occurred when

a relative Mach number of 0.7 on the rotor is reached;
the flow coefficient is 0.5;
the relative flow angle at rotor outlet is 30° measured from the axial direction;
the stage reaction is 50%.

Find the limiting stagnation temperature rise obtained in the first stage of an axial compressor
working under these conditions and compressing air at an inlet stagnation temperature of
289 K. Assume the axial velocity is constant across the stage.

3. Each stage of an axial flow compressor is of 0.5 reaction and has the same mean blade speed and
the same flow outlet angle of 30° relative to the blades. The mean flow coefficient is constant for all
stages at 0.5. At entry to the first stage the stagnation temperature is 278 K, the stagnation pressure
101.3 kPa, the static pressure is 87.3 kPa, and the flow area 0.372 m2. Using compressible flow
analysis determine the axial velocity and themass flow rate. Determine also the shaft power needed
to drive the compressor when there are six stages and the mechanical efficiency is 0.99.
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4. A 16-stage axial flow compressor is to have a pressure ratio of 6.3. Tests have shown that a stage
total-to-total efficiency of 0.9 can be obtained for each of the first six stages and 0.89 for each of
the remaining 10 stages. Assuming constant work done in each stage and similar stages find the
compressor overall total-to-total efficiency. For a mass flow rate of 40 kg/s determine the power
required by the compressor. Assume an inlet total temperature of 288 K.

5. At a particular operating condition an axial flow compressor has a reaction of 0.6, a flow
coefficient of 0.5, and a stage loading, defined as Δh0/U

2 of 0.35. If the flow exit angles for
each blade row may be assumed to remain unchanged when the mass flow is throttled, determine
the reaction of the stage and the stage loading when the air flow is reduced by 10% at constant
blade speed. Sketch the velocity triangles for the two conditions. Comment upon the likely
behaviour of the flow when further reductions in air mass flow are made.

6. A high-pressure axial compressor for a jet engine rotates at 15,000 rpm with an overall stagnation
pressure ratio of 8.5. The mass flow rate of air through the compressor is 16 kg/s�1 and the stag-
nation conditions at inlet are 200 kPa and 450 K. The polytropic efficiency is 91%.

(a) If the mean radius is 0.24 m and this is constant throughout the compressor, calculate the
total-to-total isentropic efficiency of the compressor and show that, for the stage loading to
be less than 0.4 in all stages, eight stages are required.

(b) The compressor is designed with repeating stages and zero inlet swirl. If the inlet axial Mach
number is 0.52, calculate the mean flow coefficient and sketch the velocity triangles for one
stage. Show that the blade height at exit from the compressor is about 7.8 mm.

7. The preliminary design of an axial flow compressor is to be based upon a simplified considera-
tion of the mean diameter conditions. Suppose that the stage characteristics of a repeating stage
of such a design are as follows:

Stagnation temperature rise 25°C
Reaction ratio 0.6
Flow coefficient 0.5
Blade speed 275 m/s

The gas compressed is air with a specific heat at constant pressure of 1.005 kJ/(kg°C). Assuming
constant axial velocity across the stage and equal absolute velocities at inlet and outlet, determine
the relative flow angles for the rotor. Physical limitations for this compressor dictate that the
space–chord ratio is unity at the mean diameter. Using Howell’s correlation method, determine
a suitable camber at the midheight of the rotor blades given that the incidence angle is zero.
Use the tangent difference approximation,

tan β	1� tan β	2 ¼ 1:55=ð1þ 1:5s=lÞ,
for nominal conditions and the data of Figure 3.16 for finding the design deflection. (Hint: Use
several trial values of θ to complete the solution.)

8. Air enters an axial flow compressor with a stagnation pressure and temperature of 100 kPa and
293 K, leaving at a stagnation pressure of 600 kPa. The hub and tip diameters at entry to the first
stage are 0.3 m and 0.5 m. The flow Mach number after the inlet guide vanes is 0.7 at the mean
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diameter (0.4 m). At this diameter, which can be assumed constant for all the compressor stages,
the reaction is 50%, the axial velocity to mean blade speed ratio is 0.6, and the absolute flow
angle is 30° at the exit from all stators. The type of blading used for this compressor is designated
“free vortex” and the axial velocity is constant for each stage. Assuming isentropic flow through
the inlet guide vanes (IGVs) and a small stage efficiency of 0.88, determine

(i) the air velocity at exit from the IGVs at the mean radius;
(ii) the air mass flow and rotational speed of the compressor;
(iii) the specific work done in each stage;
(iv) the overall efficiency of the compressor;
(v) the number of compressor stages required and the power needed to drive the compressor;
(vi) consider the implications of rounding the number of stages to an integer value if the pressure

ratio must be maintained at 6 for the same values of blade speed and flow coefficient.

Note: In the following problems on axial-flow fans the medium is air for which the density is
taken to be 1.2 kg/m3.

9. (a) The volume flow rate through an axial-flow fan fitted with inlet guide vanes is 2.5 m3/s and
the rotational speed of the rotor is 2604 rev/min. The rotor blade tip radius is 23 cm and the
root radius is 10 cm. Given that the stage static pressure increase is 325 Pa and the blade ele-
ment efficiency is 0.80, determine the angle of the flow leaving the guide vanes at the tip,
mean, and root radii.

(b)A diffuser is fitted at exit to the fan with an area ratio of 2.5 and an effectiveness of 0.82.
Determine the overall increase in static pressure and the air velocity at diffuser exit.

10. The rotational speed of a four-bladed axial-flow fan is 2900 rev/min. At the mean radius of
16.5 cm the rotor blades operate at CL ¼ 0.8 with CD ¼ 0.045. The inlet guide vanes produce
a flow angle of 20° to the axial direction and the axial velocity through the stage is constant at
20 m/s. For the mean radius, determine

(i) the rotor relative flow angles;
(ii) the stage efficiency;
(iii) the rotor static pressure increase;
(iv) the size of the blade chord needed for this duty.

11. A diffuser, fitted to the axial fan in the previous problem, has an efficiency of 70% and an area
ratio of 2.4. Assuming that the flow at entry to the diffuser is uniform and axial in direction, and
the losses in the entry section and the guide vanes are negligible, determine

(i) the static pressure rise and the pressure recovery factor of the diffuser;
(ii) the loss in total pressure in the diffuser;
(iii) the overall efficiency of the fan and diffuser.
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CHAPTER

Three-Dimensional Flows in Axial
Turbomachines 6

It cost much labour and many days before all these things were brought to perfection.
Defoe, Robinson Crusoe

6.1 INTRODUCTION
In Chapters 4 and 5 the fluid motion through the blade rows of axial turbomachines was assumed to be
two-dimensional in the sense that radial (i.e., spanwise) velocities did not exist. This assumption is not
unreasonable for axial turbomachines of high hub–tip ratio. However, with hub–tip ratios less than
about 4/5, radial velocities through a blade row may become appreciable, the consequent redistribution
of mass flow (with respect to radius) seriously affecting the outlet velocity profile (and flow angle
distribution). The temporary imbalance between the strong centrifugal forces exerted on the fluid
and radial pressures restoring equilibrium is responsible for these radial flows. Thus, to an observer
travelling with a fluid particle, radial motion will continue until sufficient fluid is transported (radially)
to change the pressure distribution to that necessary for equilibrium. The flow in an annular passage in
which there is no radial component of velocity, whose streamlines lie in circular, cylindrical surfaces
and which is axisymmetric, is commonly known as radial equilibrium flow.

An analysis called the radial equilibrium method, widely used for three-dimensional design calcu-
lations in axial compressors and turbines, is based upon the assumption that any radial flow that may
occur is completed within a blade row, the flow outside the row then being in radial equilibrium.
Figure 6.1 illustrates the nature of this assumption. The other assumption, that the flow is axisym-
metric, implies that the effect of the discrete blades is not transmitted to the flow.

6.2 THEORY OF RADIAL EQUILIBRIUM
Consider a small element of fluid of mass dm, shown in Figure 6.2, of unit depth and subtending an
angle dθ at the axis, rotating about the axis with tangential velocity, cθ at radius r. The element is in
radial equilibrium so that the pressure forces balance the centrifugal forces:

pþ dpð Þ r þ drð Þdθ� prdθ� pþ 1
2
dp

� �
drdθ ¼ dmc2θ=r.

Writing dm¼ ρrdθdr and ignoring terms of the second order of smallness this equation reduces to

1
ρ
dp
dr

¼ c2θ
r
. ð6:1Þ
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If the swirl velocity cθ and density are known functions of the radius, the radial pressure variation along
the blade length can be determined:

ptip � proot ¼
Z tip

root
ρc2θ

dr
r
. ð6:2aÞ

For an incompressible fluid,

ptip � proot ¼ ρ
Z tip

root
c2θ

dr
r
. ð6:2bÞ

The stagnation enthalpy is written (with cr¼ 0)

h0 ¼ hþ 1
2
c2x þ c2θ

 �

; ð6:3Þ
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Radial Equilibrium Flow Through a Rotor Blade Row
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Fluid Element in Radial Equilibrium (cr ¼ 0)
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therefore,

dh0
dr

¼ dh
dr

þ cx
dcx
dr

þ cθ
dcθ
dr

. ð6:4Þ

The thermodynamic relation Tds¼ dh� (1/ρ)dp can be similarly written

T
ds
dr

¼ dh
dr

� 1
ρ

dp
dr

. ð6:5Þ

Combining eqns. (6.1), (6.4), and (6.5), eliminating dp/dr and dh/dr, the radial equilibrium equation
may be obtained:

dh0
dr

� T
ds
dr

¼ cx
dcx
dr

þ cθ
r

d
dr

rcθð Þ. ð6:6aÞ

If the stagnation enthalpy h0 and entropy s remain the same at all radii, dh0/dr¼ ds/dr¼ 0, eqn.
(6.6a) becomes

cx
dcx
dr

þ cθ
r

d
dr

rcθð Þ ¼ 0. ð6:6bÞ

Equation (6.6b) will hold for the flow between the rows of an adiabatic, reversible (ideal) turbomachine
in which rotor rows either deliver or receive equal work at all radii. Now if the flow is incompressible,
instead of eqn. (6.3) use p0 ¼ pþ 1

2 p c2x þ c2θ

 �

to obtain

1
ρ
dp0
dr

¼ 1
ρ
dp
dr

þ cx
dcx
dr

þ cθ
dcθ
dr

. ð6:7Þ

Combining eqns. (6.1) and (6.7),
1
ρ
dp0
dr

¼ cx
dcx
dr

þ cθ
r

d
dr

rcθð Þ. ð6:8Þ

Equation (6.8) clearly reduces to eqn. (6.6b) in a turbomachine in which equal work is delivered at all
radii and the total pressure losses across a row are uniform with radius.

Equation (6.6b) may be applied to two sorts of problem: the design (or indirect) problem, in which the
tangential velocity distribution is specified and the axial velocity variation is found, or the direct problem,
in which the swirl angle distribution is specified, the axial and tangential velocities being determined.

6.3 THE INDIRECT PROBLEM
Free-Vortex Flow
This is a flow where the product of radius and tangential velocity remains constant (i.e., rcθ¼K, a con-
stant). The term vortex free might be more appropriate as the vorticity (to be precise we mean axial
vorticity component) is then zero.

Consider an element of an ideal inviscid fluid rotating about some fixed axis, as indicated in
Figure 6.3. The circulation Γ is defined as the line integral of velocity around a curve enclosing
an area A, or Γ ¼ ∮ cds. The vorticity at a point is defined as the limiting value of circulation δΓ
divided by area δA, as δA becomes vanishingly small. Thus, vorticity, ω¼ dΓ/dA.
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For the element shown in Figure 6.3, cr¼ 0 and

dΓ ¼ cθ þ dcθð Þ r þ drð Þdθ� cθrdθ ¼ dcθ
dr

þ cθ
r

� �
rdθdr,

ignoring the product of small terms. Thus, ω¼ dΓ/dA¼ (1/r)d(rcθ)/dr. If the vorticity is zero, d(rcθ)/dr
is also zero and, therefore, rcθ is constant with radius.

Putting rcθ¼ constant in eqn. (6.6b), then dcx/dr¼ 0 and so cx¼ a constant. This information can
be applied to the incompressible flow through a free-vortex compressor or turbine stage, enabling the
radial variation in flow angles, reaction and work to be found.

Compressor Stage
Consider the case of a compressor stage in which rcθ1¼K1 before the rotor and rcθ2¼K2 after the
rotor, where K1 and K2 are constants. The work done by the rotor on unit mass of fluid is

ΔW ¼ Uðcθ2 � cθ1Þ¼ ΩrðK2=r�Kl=rÞ ¼ constant.

Thus, the work done is equal at all radii.
The relative flow angles (see Figure 5.2) entering and leaving the rotor are

tan β1¼
U

cx
� tan α1 ¼ Ωr�K1=r

cx
,

tan β2¼
U

cx
� tan α2 ¼ Ωr�K2=r

cx
.

in which cx1¼ cx2¼ cx for incompressible flow.

c
� 1 dc

�

r 1dr

r

c�

d�

FIGURE 6.3

Circulation About an Element of Fluid
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In Chapter 5, reaction in an axial compressor is defined by

R ¼ static enthalpy rise in the rotor
static enthalpy rise in the stage

.

For a normal stage (α1¼ α3) with cx constant across the stage, the reaction was shown to be

R ¼ cx
2U

tan β1 þ tan β2ð Þ. ð5:21Þ

Substituting values of tan β1 and tan β2 into eqn. (5.21), the reaction becomes

R ¼ 1� k

r2
, ð6:9Þ

where

k ¼ ðK1 þ K2Þ=ð2ΩÞ.
It will be clear that, as k is positive, the reaction increases from root to tip. Likewise, from eqn. (6.1) we
observe that as c2θ/r is always positive (excepting cθ¼ 0), so static pressure increases from root to tip. For
the free-vortex flow rcθ¼K, the static pressure variation can be shown to be p/ρ¼ constant � K2/(2r2)
upon integrating eqn. (6.1).

Example 6.1
An axial flow compressor stage is designed to give free-vortex tangential velocity distributions for all radii before
and after the rotor blade row. The tip diameter is constant and 1.0 m; the hub diameter is 0.9 m and constant for the
stage. At the rotor tip the flow angles are as follows:

Absolute inlet angle, α1¼ 30°;
Relative inlet angle, β1¼ 60°;
Absolute outlet angle, α21¼ 60°;
Relative outlet angle, β2¼ 30°.

Determine

(i) the axial velocity;
(ii) the mass flow rate;
(iii) the power absorbed by the stage;
(iv) the flow angles at the hub;
(v) the reaction ratio of the stage at the hub;

given that the rotational speed of the rotor is 6000 rev/min and the gas density is 1.5 kg/m3, which can be assumed
constant for the stage. It can be further assumed that stagnation enthalpy and entropy are constant before and after
the rotor row for the purpose of simplifying the calculations.

Solution
(i) The rotational speed,Ω¼ 2πN/60¼ 628.4 rad/s. Therefore, blade tip speed,Ut¼Ωrt¼ 314.2m/s, and blade speed

at hub, Uh¼Ωrh¼ 282.5 m/s. From the velocity diagram for the stage (e.g., Figure 5.2), the blade tip speed is

Ut ¼ cxðtan 60°þ tan 60°Þ ¼ cx
ffiffiffiffiffiffiffiffiffiffiffi
3þ 1

p
=
ffiffiffi
3

p� �
.
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Therefore, cx¼ 136 m/s, constant at all radii by eqn. (6.6b).

(ii) The rate of mass flow, _m¼ πðr2t � r2hÞρcx ¼ π(0.52 � 0.452)1.5� 136¼ 30.4 kg/s.
(iii) The power absorbed by the stage,

_Wc ¼ _mUtðcθ2t � cθ1tÞ
¼ _mUtcxðtan α2t � tan α1tÞ
¼ 30.4� 314.2 � 136ð ffiffiffiffiffiffiffiffiffiffiffi

3� 1
p

=
ffiffiffi
3

p Þ
¼ 1.5MW.

(iv) At inlet to the rotor tip,
cθ1t ¼ cx tan α1 ¼ 136=

ffiffiffi
3

p
¼ 78.6m=s.

The absolute flow is a free vortex, rcθ¼ constant. Therefore, cθ1h¼ cθ1t(rt/rh)¼ 78.6 � 0.5/0.45¼ 87.3 m/s.
At outlet to the rotor tip,

cθ2t ¼ cx tan α2 ¼ 136�
ffiffiffi
3

p
¼ 235.6m=s.

Therefore, cθ2h¼ cθ2t(rt/rh)¼ 235.6 � 0.5/0.45¼ 262 m/s. The flow angles at the hub are

tan α1 ¼ cθ1h=cx ¼ 87:3=136 ¼ 0:642,

tan β1 ¼ Uh=cx � tan α1 ¼ 1:436,

tan α2 ¼ cθ2h=cx ¼ 262=136 ¼ 1:928,

tan β2 ¼ Uh=cx � tan α2 ¼ 0:152.

Thus, α1¼ 32.75°, β1¼ 55.15°, α2¼ 62.6°, β2¼ 8.64° at the hub.
(v) The reaction at the hub can be found by several methods. With eqn. (6.9),

R ¼ 1� k=r2,

and noticing that, from symmetry of the velocity triangles,

R ¼ 0:5 at r ¼ rt , then k ¼ 0:5r2t .

Therefore,

Rh ¼ 1� 0.5ð0.5=0.45Þ2 ¼ 0.382.

The velocity triangles will be asymmetric and similar to those in Figure 5.5(b).

The simplicity of the flow under free-vortex conditions is, superficially, very attractive to the designer
and many compressors have been designed to conform to this flow. Constant (1945; 1953) may be con-
sulted for an account of early British compressor design methods. Figure 6.4 illustrates the variation of
fluid angles and Mach numbers of a typical compressor stage designed for free-vortex flow. Character-
istic of this flow are the large fluid deflections near the inner wall and high Mach numbers near the outer
wall, both effects being deleterious to efficient performance. A further serious disadvantage is the large
amount of rotor twist from root to tip, which adds to the expense of blade manufacture.
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Many types of vortex design have been proposed to overcome some of the disadvantages set by
free-vortex design and several of these are compared by Horlock (1958). Radial equilibrium solutions
for the work and axial velocity distributions of some of these vortex flows in an axial compressor stage
follow.

Forced Vortex
This is sometimes called solid-body rotation because cθ varies directly with r. At entry to the rotor
assume h01 is constant and cθ1¼K1r.

With eqn. (6.6b),

d
dr

¼
�
c2x1
2

�
¼ �K1

d
dr

�
K1r

2

�

and, after integrating,

c2x1 ¼ constant� 2k21r2. ð6:10Þ
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Variation of Fluid Angles and Mach Numbers of a Free-Vortex Compressor Stage with Radius (Adapted
from Howell, 1945)
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After the rotor cθ2¼K2r and h02 � h01¼U(cθ2 � cθ1)¼Ω(K2 � K1)r
2. Thus, as the work distribution

is non-uniform, the radial equilibrium equation in the form eqn. (6.6a) is required for the flow after the
rotor:

dh02
dr

¼ 2Ω K2 �K1ð Þr ¼ d
dr

�
c2x2
2

�
þ K2

d
dr

�
K2r

2

�
.

After re-arranging and integrating,

c2x2 ¼ constant� 2½K2
2 �ΩðK2 �K1Þ�r2. ð6:11Þ

The constants of integration in eqns. (6.10) and (6.11) can be found from the continuity of mass flow, i.e.,

_m

2πρ
¼
Z rt

rh

cx1rdr ¼
Z rt

rh

cx2rdr, ð6:12Þ

which applies to the assumed incompressible flow.

General Whirl Distribution
The tangential velocity distribution is given by

cθ1 ¼ arn � b=r ðbefore rotorÞ, ð6:13aÞ

cθ2 ¼ arn þ b=r ðafter rotorÞ. ð6:13bÞ
The distribution of work for all values of the index n is constant with radius so that, if h01 is uniform,
h02 is also uniform with radius. From eqns. (6.13a and b),

ΔW ¼ h02 � h01 ¼ Uðcθ2 � cθ1Þ ¼ 2bΩ. ð6:14Þ
Selecting different values of n gives several of the tangential velocity distributions commonly used

in compressor design. With n¼ 0, or zero power blading, it leads to the so-called exponential type of
stage design (included as an exercise at the end of this chapter). With n¼ 1, or first power blading, the
stage design is called (incorrectly, as it transpires later) constant reaction.

First Power Stage Design
For a given stage temperature rise the discussion in Chapter 5 would suggest the choice of 50% reac-
tion at all radii for the highest stage efficiency. With swirl velocity distributions,

cθ1 ¼ ar� b=r, cθ2 ¼ ar þ b=r ð6:15Þ
before and after the rotor, respectively; and rewriting the expression for reaction, eqn. (5.21), as

R ¼ 1� cx
2U

tan α1 þ tan α2ð Þ, ð6:16Þ

then, using eqn. (6.15),

R ¼ 1� a=Ω ¼ constant. ð6:17Þ
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Implicit in eqn. (6.16) is the assumption that the axial velocity across the rotor remains constant which,
of course, is tantamount to ignoring radial equilibrium. The axial velocity must change in crossing the
rotor row so that eqn. (6.17) is only a crude approximation at the best. Just how crude is this approx-
imation will be indicated later.

Assuming constant stagnation enthalpy at entry to the stage, integrating eqn. (6.6b), the axial velo-
city distributions before and after the rotor are

c2x1 ¼ constant� 4a
1
2
ar2 � b ln r

� �
, ð6:18aÞ

c2x2 ¼ constant� 4a
1
2
ar2 þ b ln r

� �
. ð6:18bÞ

More conveniently, these expressions can be written non-dimensionally as

cx1
Ut

� �2
¼ A1 � 2a

Ω

� �2 1
2

r

rt

� �2
� b

ar2t
ln

r

rt

� �" #
, ð6:19aÞ

cx2
Ut

� �2
¼ A2 � 2a

Ω

� �2 1
2

r

rt

� �2
þ b

ar2t
ln

r

rt

� �" #
, ð6:19bÞ

in which Ut¼Ωrt is the tip blade speed. The constants A1, A2 are not entirely arbitrary as the continuity
equation, eqn. (6.12), must be satisfied.

Example 6.2
As an illustration consider a single stage of an axial-flow air compressor of hub–tip ratio 0.4 with a nominally
constant reaction (i.e., according to eqn. 6.17) of 50%. Assuming incompressible, inviscid flow, a blade tip
speed of 300 m/s, a blade tip diameter of 0.6 m, and a stagnation temperature rise of 16.1°C, determine the radial
equilibrium values of axial velocity before and after the rotor. The axial velocity far upstream of the rotor at the
casing is 120 m/s. Take Cp for air as 1.005 kJ/(kg°C).

Solution
The constants in eqn. (6.19a) can be easily determined. From eqn. (6.17),

2a=Ω ¼ 2ð1�RÞ ¼ 1:0.

Combining eqns. (6.14) and (6.17),

b

ar2t
¼ ΔW

2Ω2ð1�RÞr2t
¼ Cp �ΔT0

2U2
t ð1�RÞ ¼

1005� 16:1

3002
¼ 0:18.

The inlet axial velocity distribution is completely specified and the constant A1 solved. From eqn. (6.19a),

cx1
Ut

� �2

¼ A1 � 1
2
ðr=rtÞ2 � 0:18 ln r=rtð Þ

� �
.

At r¼ rt, cx1/Ut¼ 0.4 and, hence, A1¼ 0.66.
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Although an explicit solution for A2 can be worked out from eqn. (6.19b) and eqn. (6.12), it is far speedier to
use a semigraphical procedure. For an arbitrarily selected value of A2, the distribution of cx2/Ut is known. Values of
(r/rt) � (cx2/Ut) and (r/rt) � (cx1/Ut) are plotted against r/rt and the areas under these curves compared. New values
of A2 are then chosen until eqn. (6.12) is satisfied. This procedure is quite rapid and normally requires only two or
three attempts to give a satisfactory solution. Figure 6.5 shows the final solution of cx2/Ut obtained after three
attempts. The solution is

cx2
Ut

� �
¼ 0:56� 1

2
r

rt

� �2
þ 0:18 ln

r

rt

� �" #
.

It is illuminating to calculate the actual variation in reaction taking account of the change in axial velocity.
From eqn. (5.20) the true reaction across a normal stage is

R
0 ¼ w2

1 �w2
2

2Uðcθ2 � cθ1Þ .

From the velocity triangles, Figure 5.2,

w2
1 �w2

2 ¼ ðwθ1 þ wθ2Þðwθ1 �wθ2Þ þ ðc2x1 � c2x2Þ.
As wθ1þwθ2¼ 2U� (cθ1þ cθ2) and wθ1�wθ2¼ cθ2� cθ1,

R
0 ¼ 1� cθ1 þ cθ2

2U
þ c2x1 � c2x2
2Uðcθ2 � cθ1Þ .
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Solution of Exit Axial-Velocity Profile for a First Power Stage
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For the first power swirl distribution, eqn. (6.15),

R
0 ¼ 1� a

Ω
þ c2x1 � c2x2

4Ωb
.

From the radial equilibrium solution in eqns. (6.19a and b), after some rearrangement,

c2x1 � c2x2
4Ωb

¼ A1 �A2

2ψt
þ 2a

Ω

� �
ln

r

rt

� �
,

where

ψt ¼
ΔW
U2

t

¼ CpΔT0
Ω2r2t

.

In this example, 1� a/Ω¼ 1
2
, ψt¼ 0.18,

R
0 ¼ 0:778þ lnðr=rtÞ.

The true reaction variation is shown in Figure 6.5 and it is evident that eqn. (6.17) is invalid as a result of the
axial velocity changes.

6.4 THE DIRECT PROBLEM
The flow angle variation is specified in the direct problem and the radial equilibrium equation enables
the solution of cx and cθ to be found. The general radial equilibrium equation can be written in the form

dh0
dr

� T
ds
dr

¼ c2θ
r
þ c

dc
dr

¼ c2sin2α
r

þ c
dc
dr

, ð6:20Þ

as cθ¼ c sin α.

If both dh0/dr and ds/dr are zero, eqn. (6.20) integrated gives

log c ¼ �
Z

sin2α
dr
r
þ constant

or, if c¼ cm at r¼ rm, then

c

cm
¼ exp �

Z r

rm

sin2α
dr
r

� �
. ð6:21Þ

If the flow angle α is held constant, eqn. (6.21) simplifies still further:

c

cm
¼ cx

cxm
¼ cθ

cθm
¼ r

rm

� �� sin2α

. ð6:22Þ

The vortex distribution represented by eqn. (6.22) is frequently employed in practice as untwisted
blades are relatively simple to manufacture.
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The general solution of eqn. (6.20) can be found by introducing a suitable integrating factor into

the equation. Multiplying throughout by exp

�
2
Z

sin2αdr=r

�
it follows that

d
dr

�
c2exp

�
2
Z
sin 2αdr=r

��
¼ 2

dh0
dr

� T
ds
dr

� �
exp

�
2
Z
sin 2αdr=r

�
.

After integrating and inserting the limit c¼ cm at r¼ rm,

c2exp

�
2
Z r

sin 2αdr=r

�
� c2mexp

�
2
Z rm

sin 2αdr=r

�
¼ 2
Z r

rm

dh0
dr

� T
ds
dr

� �
exp

�
2
Z
sin 2αdr=r

�
dr.

ð6:23aÞ
Particular solutions of eqn. (6.23a) can be readily obtained for simple radial distributions of α, h0,

and s. Two solutions are considered here in which both 2dh0/dr ¼ kc2m/rm and ds/dr¼ 0, k being an
arbitrary constant.

(i) Let a¼ 2 sin2 α. Then exp

�
2
Z
sin 2αdr=r

�
¼ ra and, hence,

c

cm

� �2 r

rm

� �a

¼ 1þ k

1þ a

r

rm

� �1þ a

� 1

" #
. ð6:23bÞ

Equation (6.22) is obtained immediately from this result with k¼ 0.
(ii) Let br/rm¼ 2 sin2 α. Then,

c2expðbr=rmÞ� c2mexpðbÞ ¼ ðkc2m=rmÞ
Z r

rm

expðbr=rmÞdr

and eventually,

c

cm

� �2

¼ k

b
þ 1� k

b

� �
exp b 1� r

rm

� �� �
. ð6:23cÞ

6.5 COMPRESSIBLE FLOW THROUGH A FIXED BLADE ROW
In the blade rows of high performance gas turbines, fluid velocities approaching, or even exceeding,
the speed of sound are common and compressibility effects may no longer be ignored. A simple ana-
lysis is outlined here for the inviscid flow of a perfect gas through a fixed row of blades which, never-
theless, can be extended to the flow through moving blade rows.

The radial equilibrium equation, eqn. (6.6a), applies to compressible flow as well as incompressible
flow. With constant stagnation enthalpy and constant entropy, a free-vortex flow therefore implies uni-
form axial velocity downstream of a blade row, regardless of any density changes incurred in passing
through the blade row. In fact, for high-speed flows there must be a density change in the blade row,
which implies a streamline shift as shown in Figure 6.1. This may be illustrated by considering the
free-vortex flow of a perfect gas as follows. In radial equilibrium,

1
ρ
dp
dr

¼ c2θ
r
¼ K2

r3
with cθ ¼ K=r.
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For reversible adiabatic flow of a perfect gas, ρ¼Ep1/γ, where E is constant. Thus,Z
p�1=γ dp ¼ EK2

Z
r�3dr þ constant,

therefore,

p ¼ constant ¼ γ� 1
2γ

� �
EK2

r2

� �γ=ðγ� 1Þ
. ð6:24Þ

For this free-vortex flow the pressure, and therefore the density also, must be larger at the casing than at
the hub. The density difference from hub to tip may be appreciable in a high velocity, high swirl angle
flow. If the fluid is without swirl at entry to the blades the density will be uniform. Therefore, from
continuity of mass flow there must be a redistribution of fluid in its passage across the blade row to
compensate for the changes in density. Thus, for this blade row, the continuity equation is

_m ¼ ρ1A1cx1 ¼ 2πcx2

Z rt

rh

ρ2rdr, ð6:25Þ

where ρ2 is the density of the swirling flow, obtainable from eqn. (6.24).

6.6 CONSTANT SPECIFIC MASS FLOW
Although there appears to be no evidence that the redistribution of the flow across blade rows is a
source of inefficiency, it has been suggested by Horlock (1966) that the radial distribution of cθ for
each blade row is chosen so that the product of axial velocity and density is constant with radius, i.e.,

d _m=dA ¼ ρcx ¼ ρc cos α ¼ ρmcm cos αm ¼ constant, ð6:26Þ
where subscript m denotes conditions at r¼ rm. This constant specific mass flow design is the logical
choice when radial equilibrium theory is applied to compressible flows as the assumption that cr¼ 0 is
then likely to be realised.

Solutions may be determined by means of a simple numerical procedure and, as an illustration of
one method, a turbine stage is considered here. It is convenient to assume that the stagnation enthalpy
is uniform at nozzle entry, the entropy is constant throughout the stage, and the fluid is a perfect gas. At
nozzle exit under these conditions the equation of radial equilibrium, eqn. (6.20), can be written as

dc=c ¼ �sin2αdr=r. ð6:27Þ
From eqn. (6.1), noting that at constant entropy the acoustic velocity a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

dp=dρ
p

,

1
ρ
dp
dr

¼ 1
ρ

dp
dρ

� �
dρ
dr

� �
¼ a2

ρ
dρ
dr

¼ c2

r
sin 2α,

therefore,

dρ=ρ¼ M2sin 2αdr=r, ð6:28aÞ
where the flow Mach number

M ¼ c=a ¼ c=
ffiffiffiffiffiffiffiffi
γRT

p
. ð6:28bÞ
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The isentropic relation between temperature and density for a perfect gas is

T=Tm ¼ ðρ=ρmÞγ�1,

which after logarithmic differentiation gives
dT=T ¼ ðγ� 1Þdρ=ρ. ð6:29Þ

Using this set of equations the procedure for determining the nozzle exit flow is as follows. Starting
at r¼ rm, values of cm, αm, Tm, and ρm are assumed to be known. For a small finite interval Δr, the
changes in velocity Δc, density Δρ, and temperature ΔT can be computed using eqns. (6.27), (6.28),
and (6.29), respectively. Hence, at the new radius r¼ rm þ Δr, the velocity c¼ cm þ Δc, the density
ρ¼ ρm þ Δρ and temperature T¼ Tm þ ΔT are obtained. The corresponding flow angle α and Mach
number M can now be determined from eqns. (6.26) and (6.28b), respectively. Thus, all parameters of
the problem are known at radius r¼ rm þ Δr. This procedure is repeated for further increments in
radius to the casing and again from the mean radius to the hub.

Figure 6.6 shows the distributions of flow angle andMach number computed with this procedure for a
turbine nozzle blade row of 0.6 hub–tip radius ratio. The input data usedwas αm¼ 70.4° andM¼ 0.907 at
the mean radius. Air was assumed at a stagnation pressure of 859 kPa and a stagnation temperature of
465°K. A remarkable feature of these results is the almost uniform swirl angle that is obtained.

With the nozzle exit flow fully determined the flow at rotor outlet can now be computed by a similar
procedure. The procedure is a little more complicated than that for the nozzle row because the specific
work done by the rotor is not uniform with radius. Across the rotor, using the notation of Chapter 4,

h03 � h03 ¼ Uðcθ2 þ cθ3Þ, ð6:30aÞ
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and, hence, the gradient in stagnation enthalpy after the rotor is

dh03=dr ¼�d½Uðcθ2 � cθ3Þ�=dr ¼�dðUcθ2Þ=dr� dðUc3 sin α3Þ=dr.
After differentiating the last term,

�dh0 ¼ dðUcθ2Þ þ Uðc sin αdr=r þ sin αdcþ c cos αdαÞ, ð6:30bÞ
the subscript 3 having now been dropped.

From eqn. (6.20) the radial equilibrium equation applied to the rotor exit flow is

dh0 ¼ c2sin 2αdr=r þ cdc. ð6:30cÞ
After logarithmic differentiation of ρc cos α¼ constant,

dρ=ρþ dc=c ¼ tan αdα. ð6:31Þ
Eliminating successively dh0 between eqns. (6.30b) and (6.30c), dρ/ρ between eqns. (6.28) and (6.31),
and finally dα from the resulting equations gives

dc
c

1þ cθ
U

� �
¼ �sin 2α

dðrcθÞ
rcθ

þ 1þ cθ
U

þM2
x

� � dr
r

� �
, ð6:32Þ

where Mx ¼ Mcos α ¼ c cos α=
ffiffiffiffiffiffiffiffi
γRT

p
and the static temperature

T ¼ T3 ¼ T03 � c23= 2Cp


 � ¼ T02 � U cθ2 þ cθ3ð Þ þ 1
2
c23

� �
=Cp. ð6:33Þ

The verification of eqn. (6.32) is left as an exercise for the diligent student.
Provided that the exit flow angle α3 at r¼ rm and the mean rotor blade speeds are specified, the

velocity distribution, etc., at rotor exit can be readily computed from these equations.

6.7 OFF-DESIGN PERFORMANCE OF A STAGE
A turbine stage is considered here although, with some minor modifications, the analysis can be made
applicable to a compressor stage.

Assuming the flow is at constant entropy, apply the radial equilibrium equation, eqn. (6.6a), to the
flow on both sides of the rotor:

dh03
dr

¼ dh02
dr

�Ω
d
dr

rcθ2 þ rcθ3ð Þ ¼ cx3
dcx3
dr

þ cθ3
r

d
dr

rcθ3ð Þ.

Therefore,

cx2
dcx2
dr

þ cθ2
r

�Ω
� � d

dr
rcθ2ð Þ ¼ cx3

dcx3
dr

þ cθ3
r

þΩ
� � d

dr
rcθ3ð Þ.

Substituting cθ3¼ cx3 tan β3�Ωr into this equation, after some simplification,

cx2
dcx2
dr

þ cθ2
r

�Ω
� � d

dr
ðrcθ2Þ ¼ cx3

dcx3
dr

þ cx3
r
tan β3

d
dr

ðrcx3 tan β3Þ� 2Ωcx3 tan β3. ð6:34Þ
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In a particular problem the quantities cx2, cθ2, β3 are known functions of radius and Ω can be spe-
cified. Equation (6.34) is thus a first-order differential equation in which cx3 is unknown and may best
be solved, in the general case, by numerical iteration. This procedure requires a guessed value of cx3
at the hub and, by applying eqn. (6.34) to a small interval of radius Δr, a new value of cx3 at radius
rh þ Δr is found. By repeating this calculation for successive increments of radius a complete velocity
profile cx3 can be determined. Using the continuity relationZ rt

rh

cx3rdr ¼
Z rt

rh

cx2rdr,

this initial velocity distribution can be integrated and a new, more accurate, estimate of cx3 at the hub
then found. Using this value of cx3 the step-by-step procedure is repeated as described and again
checked by continuity. This iterative process is normally rapidly convergent and, in most cases,
three cycles of the calculation enable a sufficiently accurate exit velocity profile to be found.

The off-design performance may be obtained by making the approximation that the rotor relative
exit angle β3 and the nozzle exit angle α2 remain constant at a particular radius with a change in mass
flow. This approximation is not unrealistic as cascade data (see Chapter 3) suggest that fluid angles at
outlet from a blade row alter very little with change in incidence up to the stall point.

Although any type of flow through a stage may be successfully treated using this method, rather
more elegant solutions in closed form can be obtained for a few special cases. One such case is outlined
next for a free-vortex turbine stage whilst other cases are already covered by eqns. (6.21)–(6.23).

6.8 FREE-VORTEX TURBINE STAGE
Suppose, for simplicity, a free-vortex stage is considered where, at the design point, the flow at rotor
exit is completely axial (i.e., without swirl). At stage entry the flow is again supposed completely axial
and of constant stagnation enthalpy h01. Free-vortex conditions prevail at entry to the rotor, rcθ2¼ rcx2
tan α2¼ constant. The problem is to find how the axial velocity distribution at rotor exit varies as the
mass flow is altered away from the design value.

At off-design conditions the relative rotor exit angle β3 is assumed to remain equal to the value β*
at the design mass flow (* denotes design conditions). Thus, referring to the velocity triangles in
Figure 6.7, at off-design conditions the swirl velocity cθ3 is evidently non-zero:

cθ3 ¼ cx3 tan β3 �U ¼ cx3 tan β
	
3 �Ωr. ð6:35Þ

At the design condition c	θ3 ¼ 0 and so

c	x3 tan β
	
3 ¼ Ωr. ð6:36Þ

Combining eqns. (6.35) and (6.36),

cθ3 ¼ Ωr
cx3
c	x3

� 1

� �
. ð6:37Þ

The radial equilibrium equation at rotor outlet gives

dh03
dr

¼ cx3
dcx3
dr

þ cθ3
r

d
dr

rcθ3ð Þ ¼ �Ω
d
dr

rcθ3ð Þ, ð6:38Þ
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after combining with eqn. (6.33), noting that dh02/dr¼ 0 and that (d/dr)(rcθ2)¼ 0 at all mass flows.
From eqn. (6.37),

Ωþ cθ3
r

¼ Ω
cx3
c	x3

, rcθ3 ¼ Ωr2
cx3
c	x3

� 1

� �
,

which when substituted into eqn. (6.38) gives

�dcx3
dr

¼ Ω2

c	x3
2r

cx3
c	x3

� 1

� �
þ r2

c	x3

dcx3
dr

� �
.

After rearranging,

dcx3
cx3 � c	x3

¼ �dðΩ2r2Þ
ðc	2x3 þ Ω2r2Þ . ð6:39Þ

Equation (6.39) is immediately integrated in the form

cx3 � c	x3
cx3m � c	x3

¼ c	2x3 þ Ω2r2m
c	2x3 þ Ω2r2

, ð6:40aÞ
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Design and Off-Design Velocity Triangles for a Free-Vortex Turbine Stage
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where cx3¼ cx3m at r¼ rm. Equation (6.40a) is more conveniently expressed in a non-dimensional
form by introducing flow coefficients �¼ cx3/Um, �*¼ c*x3/Um, and �m¼ cx3m/Um. Thus,

�=�	 � 1
�m=�

	 � 1
¼ �	2 þ 1

�	2 þ ðr=rmÞ2
, ð6:40bÞ

If rm is the mean radius then cx3m ffi cx1 and, therefore, �m provides an approximate measure of the
overall flow coefficient for the machine (Note: cx1 is uniform).

The results of this analysis are shown in Figure 6.8 for a representative design flow coefficient
�*¼ 0.8 at several different off-design flow coefficients �m, with r/rm¼ 0.8 at the hub and
r/rm¼ 1.2 at the tip. It is apparent for values of �m < �*, that cx3 increases from hub to tip; conversely
for �m > �*, cx3 decreases towards the tip.

The foregoing analysis is only a special case of the more general analysis of free-vortex turbine and
compressor flows (Horlock and Dixon, 1966) in which rotor exit swirl, rc	θ3 is constant (at design con-
ditions) is included. However, from Horlock and Dixon, it is quite clear that even for fairly large values
of α	3m, the value of � is little different from the value found when α	3 ¼ 0, all other factors being equal.
In Figure 6.8 values of � are shown when α	3m ¼ 31:4° at �m¼ 0.4(�*¼ 0.8) for comparison with the
results obtained when α	3 ¼ 0.

It should be noted that the rotor efflux flow at off-design conditions is not a free vortex.

6.9 ACTUATOR DISC APPROACH
In the radial equilibrium design method it was assumed that all radial motion took place within the
blade row. However, in most turbomachines of low hub–tip ratio, appreciable radial velocities can
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be measured outside of the blade row. Figure 6.9, taken from a review paper by Hawthorne and
Horlock (1962), shows the distribution of the axial velocity component at various axial distances
upstream and downstream of an isolated row of stationary inlet guide vanes. This figure clearly illus-
trates the appreciable redistribution of flow in regions outside of the blade row and that radial veloci-
ties must exist in these regions. For the flow through a single row of rotor blades, the variation in
pressure (near the hub and tip) and variation in axial velocity (near the hub), both as functions of
axial position, are shown in Figure 6.10, also taken from Hawthorne and Horlock. Clearly, radial equi-
librium is not established entirely within the blade row.

A more accurate form of three-dimensional flow analysis than radial equilibrium theory is obtained
with the actuator disc concept. The idea of an actuator disc is quite old and appears to have been first
used in the theory of propellers; it has since evolved into a fairly sophisticated method of analysing
flow problems in turbomachinery. To appreciate the idea of an actuator disc, imagine that the axial
width of each blade row is shrunk while, at the same time, the space–chord ratio, the blade angles,
and overall length of machine are maintained constant. As the deflection through each blade row
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for a given incidence is, apart from Reynolds number and Mach number effects (cf. Chapter 3 on
cascades), fixed by the cascade geometry, a blade row of reduced width may be considered to affect
the flow in exactly the same way as the original row. In the limit as the axial width vanishes, the blade
row becomes, conceptually, a plane discontinuity of tangential velocity—the actuator disc. Note that
while the tangential velocity undergoes an abrupt change in direction, the axial and radial velocities are
continuous across the disc.

An isolated actuator disc is depicted in Figure 6.11 with radial equilibrium established at fairly
large axial distances from the disc. An approximate solution to the velocity fields upstream and
downstream of the actuator can be found in terms of the axial velocity distributions far upstream
and far downstream of the disc. The detailed analysis exceeds the scope of this book, involving
the solution of the equations of motion, the equation of continuity, and the satisfaction of boundary
conditions at the walls and disc. The form of the approximate solution is of considerable interest and
is quoted here.

For convenience, conditions far upstream and far downstream of the disc are denoted by subscripts
∞1 and ∞2, respectively (Figure 6.11). Actuator disc theory proves that at the disc (x¼ 0), at any given
radius, the axial velocity is equal to the mean of the axial velocities at ∞1 and ∞2 at the same radius, or

cx01 ¼ cx02 ¼ 1
2

cx∞1 þ cx∞2ð Þ. ð6:41Þ

Subscripts 01 and 02 denote positions immediately upstream and downstream, respectively, of the
actuator disc. Equation (6.41) is known as the mean-value rule.

In the downstream flow field (x 
 0), the difference in axial velocity at some position (x, rA) to that
at position (x¼∞, rA) is conceived as a velocity perturbation. Referring to Figure 6.12, the axial velo-
city perturbation at the disc (x¼ 0, rA) is denoted by Δ0 and at position (x, rA) by Δ. The important
result of actuator disc theory is that velocity perturbations decay exponentially away from the disc.
This is also true for the upstream flow field (x � 0). The result obtained for the decay rate is

Δ=Δ0 ¼ 1� exp½�πx=ðrt � rhÞ�, ð6:42Þ

Equivalent actuator disc

`1 `201 02
Tip

Hub

Streamlines
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FIGURE 6.11

The Actuator Disc Assumption (After Horlock, 1958)
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where the minus and plus signs apply to the flow regions x 
 0 and x � 0, respectively. Equation (6.42)
is often called the settling-rate rule. Since cx1¼ cx01 þ Δ, cx2¼ cx02 � Δ and noting that Δ0¼ 1

2(cx∞1 �
cx∞2), eqns. (6.41) and (6.42) combine to give

cx1 ¼ cx∞1 � 1
2

cx∞1 � cx∞2ð Þexp πx= rt � rhð Þ½ �, ð6:43aÞ

cx2 ¼ cx∞2 þ 1
2

cx∞1 � cx∞2ð Þexp �πx= rt � rhð Þ½ �. ð6:43bÞ

At the disc, x¼ 0, eqns. (6.43a and b) reduce to eqn. (6.41). It is of particular interest to note, in Figures 6.9
and 6.10, how closely isolated actuator disc theory compares with experimentally derived results.

Blade Row Interaction Effects
The spacing between consecutive blade rows in axial turbomachines is usually sufficiently small for
mutual flow interactions to occur between the rows. This interference may be calculated by an exten-
sion of the results obtained from isolated actuator disc theory. As an illustration, the simplest case of
two actuator discs situated a distance δ apart from one another is considered. The extension to the case
of a large number of discs is given in Hawthorne and Horlock (1962).

Consider each disc in turn as though it were in isolation. Referring to Figure 6.13, disc A, located at
x¼ 0, changes the far upstream velocity cx∞1 to cx∞2 far downstream. Let us suppose for simplicity that
the effect of disc B, located at x¼ δ, exactly cancels the effect of disc A (i.e., the velocity far upstream
of disc B is cx∞2, which changes to cx∞1 far downstream). Thus, for disc A in isolation,

cx ¼ cx∞1 � 1
2
cx∞1 � cx∞2ð Þexp �πjxj

H

� �
, x ≤ 0, ð6:44Þ

cx ¼ cx∞2 þ 1
2
cx∞1 � cx∞2ð Þexp �πjxj

H

� �
, x ≥ 0, ð6:45Þ
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where |x| denotes modulus of x and H¼ rt� rh.
For disc B in isolation,

cx ¼ cx∞2 � 1
2
cx∞2 � cx∞1ð Þexp �πjx� δj

H

� �
, x ≤ δ, ð6:46Þ

cx ¼ cx∞1 þ 1
2
cx∞2 � cx∞1ð Þexp �πjx� δj

H

� �
, x ≥ δ. ð6:47Þ

Now the combined effect of the two discs is most easily obtained by extracting from the preceding
four equations the velocity perturbations appropriate to a given region and adding these to the related
radial equilibrium velocity for x � 0, and to cx∞1 the perturbation velocities from eqns. (6.44) and
(6.46):

cx ¼ cx∞1 � 1
2

cx∞1 � cx∞2ð Þ exp
�πjxj
H

� �
� exp

�πjx� δj
H

� �� �
. ð6:48Þ

For the region 0 � x � δ,

cx ¼ cx∞2 þ 1
2
cx∞1 � cx∞2ð Þ exp

�πjxj
H

� �
þ exp

�πjx� δj
H

� �� �
. ð6:49Þ

For the region x 
 δ,

cx ¼ cx∞1 þ 1
2
cx∞1 � cx∞2ð Þ exp

�πjxj
H

� �
� exp

�πjx� δj
H

� �� �
. ð6:50Þ
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Figure 6.13 indicates the variation of axial velocity when the two discs are regarded as isolated and
when they are combined. It can be seen from these equations that, as the gap between these two discs is
increased, so the perturbations tend to vanish. Thus, in turbomachines where δ/r is fairly small (e.g., the
front stages of aircraft axial compressors or the rear stages of condensing steam turbines), interference
effects are strong and then the simpler radial equilibrium analysis is inadequate.

Application to Compressible Flow
An elegant analysis to the problem of compressible flow through a multi-stage turbomachine has been
developed by Lewis (1995) using an innovative application of actuator disc theory, which models the
influence of density gradients on the meridional flow through the turbomachine. The analysis takes
advantage of previous solutions for the flow induced by source discs and the analogy between com-
pressible flows and incompressible flows with source distributions. The following conclusions were
drawn by Lewis:

(i) Vortex actuator disc theory can be extended to include compressibility effects, which may be
superimposed linearly upon rotational effects. The influence of density gradients upon the mer-
idional flow is considerable for typical free-vortex axial turbine stages.

(ii) Plane actuator discs can be easily replaced by smeared actuator discs distributed uniformly
between the leading and trailing edge planes of each blade row.

(iii) A simple analysis extending cylindrical compressible actuator disc theory to axial turbines with
flared annuli has been completed for application to multi-stage turbines.

(iv) The method is ideal for rapid computational analysis.

Figure 6.14 illustrates the predicted axial velocity distribution at the hub and tip radii of a model
turbine stage (Table 6.1 gives the main details) resulting from axially smeared actuator discs to repre-
sent the blade rows. This smearing spreads the density gradient fairly realistically between the blade
leading and trailing edges. The rather large change in axial velocity observed is the result of the overall
decrease in density—the stage chosen was cylindrical. Usual design practice would be to increase the
annular area to maintain a more or less constant value of axial velocity.

6.10 COMPUTER-AIDED METHODS OF SOLVING THE THROUGH-FLOW
PROBLEM

Actuator disc theory has given an improved understanding of the complicated meridional through-flow
problem in turbomachines of simple geometry and flow conditions, but its application to the design of
axial-flow compressors and turbines is still limited. Advanced computational methods are still being
evolved for predicting the meridional compressible flow in turbomachines with flared annuli, some
of which are now described

Through-Flow Methods
In any of the so-called through-flow methods the equations of motion to be solved are simplified.
Firstly, the flow is taken to be steady in both the absolute and relative frames of reference. Secondly,
outside of the blade rows the flow is assumed to be axisymmetric, which means that the effects of
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wakes from an upstream blade row are understood to have “mixed out” so as to give uniform circum-
ferential conditions. Within the blade rows the effects of the blades themselves are modelled by using a
passage averaging technique or an equivalent process. Clearly, with these major assumptions, solutions
obtained with these through-flow methods can be only approximations to the real flow. As a step
beyond this Stow (1985) outlined the ways, supported by equations, of including the viscous flow
effects into the flow calculations.

Three of the most widely used techniques for solving through-flow problems are

(i) Streamline curvature, which is based on an iterative procedure, is described in some detail by
Macchi (1985) and earlier by Smith (1966). It is the oldest and most widely used method for

Table 6.1 Specification of Model Turbine Stage

Hub/tip ratio, rh/rt 0.6

Flow coefficient at r.m.s. radius 0.5

Work coefficient at r.m.s. radius 1.0

Exit mach number M2h at root radius 1.0

Total-to-total efficiency 92 %

Zero swirl flow upstream of stator

Free-vortex flow downstream of stator

Perfect gas (air) assumed
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FIGURE 6.14

Flow through Turbine Stage in Cylindrical Annulus with Smeared Actuator Disc Representation of the Blade Rows
(Adapted from Lewis 1995 with the permission of Elsevier Science Ltd.)

6.10 Computer-Aided Methods of Solving the Through-Flow Problem 207



solving the through-flow problem in axial-flow turbomachines and has the intrinsic capability of
being able to handle variously shaped boundaries with ease. The method is widely used in the gas
turbine industry.

(ii) Matrix through-flow or finite difference solutions (Marsh, 1968), in which computations of the
radial equilibrium flow field are made at a number of axial locations within each blade row as
well as at the leading and trailing edges and outside of the blade row. An illustration of a typical
computing mesh for a single blade row taken from Macchi (1985) is shown in Figure 6.15.

(iii) Time-marching (Denton, 1985), in which the computation starts from some assumed flow field
and the governing equations are marched forward with time. The method requires a large num-
ber of iterations needed to reach a convergent solution but can be used to solve both subsonic
and supersonic flow. For highly loaded blade rows, which can include patches of supersonic
flow, this approach is the most suitable.

All three methods solve the same equations of fluid motion, energy, and state for an axisym-
metric flow through a turbomachine with varying hub and tip radii and, therefore, lead to the
same solution. According to Denton and Dawes (1999) the streamline curvature method remains
the dominant numerical scheme amongst these through-flow methods because of its simplicity
and ability to cope with mixed subsonic and supersonic flows. The only alternative method com-
monly used is the stream function method. In effect the same equations are solved as the streamline
curvature method except that an axisymmetric stream function is employed as the primary variable.
This method does have the advantage of simplifying the numerics by satisfying the continuity equa-
tion via the boundary conditions of the stream function at the hub and casing. However, this method
fails when the flow becomes transonic because then there are two possible velocity distributions and
it is not obvious whether to take the subsonic or the supersonic solution.
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Typical Computational Mesh for a Single Blade Row (Adapted from Macchi, 1985)
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6.11 APPLICATION OF COMPUTATIONAL FLUID DYNAMICS TO
THE DESIGN OF AXIAL TURBOMACHINES

Up to about 1990 the aerodynamic design of most axial turbomachines was executed by the so-called
through-flow methods. The use of these models depended upon a long and slow process of iteration.
The way this worked was to design and build a machine from the existing database. Then, from tests
done on the fabricated hardware, the existing flow correlations would be updated and applied to obtain
a new axisymmetric design of the configuration. Although this approach did often produce excellent
machines with outstanding aerodynamic performance, the demand for more rapid methods at less cost
forced a major reappraisal of the methodology used. The foundation of this new methodology required
aerodynamic models with a resolution greater than the previously used axisymmetric flow models. As
well as this it was essential that the models used could complete the task in a matter of hours rather than
weeks.

Over the last two decades numerous papers have reviewed the state of art and developments of
computational fluid dymanics (CFD) as applied to turbomachinery design and flow prediction. Only
a few are considered here, and then only very briefly. Adamczyk (2000) presented a particularly
impressive and valuable paper summarising the state of three-dimensional CFD-based models of the
time-averaged flow within axial flow multi-stage turbomachines. His paper placed emphasis on models
that are compatible with the industrial design environment and would offer the potential of providing
credible results at both design and off-design operating conditions. Adamczyk laid stress on the need to
develop models free of aerodynamic input from semi-empirical design data. He developed a model
referred to as the average-passage flow model, which described the time-averaged flow field within
a typical blade passage of a blade row embedded within a multi-stage configuration. The resulting
flow field is periodic over the pitch of the blade row of interest.* With this model the geometry is
the input and the output is the flow field generated by the geometry. During the design process, geo-
metry updates are derived exclusively from results obtained with the average-passage model. The cred-
ibility of an average-passage flow simulation is not tied to aerodynamic matching information provided
by a through-flow system or data match. The credibility is, in fact, linked to the models used to account
for the effects of the unsteady flow environment on the average-passage flow field. The effect of the
unsteady deterministic flow field on aerodynamic matching of stages is accounted for by velocity cor-
relations within the momentum equations.**

According to Horlock and Denton (2003) modern turbomachinery design relies almost completely
on CFD to develop three-dimensional blade sections. Simple methods of determining performance
with empirical input, such as described in this book, are still needed for the mean radius design and
for through-flow calculations. It is often emphasised by experienced designers that, if the one-
dimensional preliminary design is incorrect, e.g., the blade diffusion factors and stage loading, then
no amount of CFD will produce a good design! What CFD does provide is the ability to exploit the

*In Chapter 1 of this book it was observed that turbomachines can work the way they do, i.e., imparting or extracting
energy, only because of the unsteady flow effects taking place within the machine. This flow unsteadiness relates
primarily to the blade passage spacing and rotational speed of the rotor and not to small-scale turbulence.
**The term unsteady deterministic refers to all time-dependent behaviour linked to shaft rotational speed. All unsteady
behaviour not linked to shaft rotational speed is referred to as non-deterministic.
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three-dimensional nature of the flow to suppress deleterious features such as corner stall in compressors
or strong secondary flows in turbines.

Horlock and Denton (2003) indicated that loss predictions by CFD are still not accurate and that
interpretation of the computations requires considerable skill and experience. Good physical under-
standing and judgement of when the flow has been improved remain very important. There are
many reported examples of the successful use of CFD to improve designs but, it is suspected, many
unreported failures. Examples of success are the use of bowed blades to control secondary loss in tur-
bines and the use of sweep and bow to control or reduce corner separations in compressors. Both of
these techniques are now routinely employed in production machines.

The outlook for CFD is that its capabilities are continuously developing and that future truboma-
chinery will continue to be more dependent on it than at present. The trend, as outlined by Adamczyk
(2000), is towards multi-stage and unsteady flow computations with more detailed geometrical features
and larger computational meshes.

6.12 SECONDARY FLOWS
No account of three-dimensional motion in axial turbomachines would be complete without giving, at
least, a brief description of secondary flow. When a fluid particle possessing rotation is turned (e.g., by
a cascade) its axis of rotation is deflected in a manner analogous to the motion of a gyroscope, i.e., in a
direction perpendicular to the direction of turning. The result of turning the rotation (or vorticity) vector
is the formation of secondary flows. The phenomenon must occur to some degree in all turbomachines,
but is particularly in evidence in axial-flow compressors because of the thick boundary layers on the
annulus walls. This case has been discussed in some detail by Horlock (1958), Preston (1953), Carter
(1948), and many other writers.

Consider the flow at inlet to the guide vanes of a compressor to be completely axial and with a
velocity profile as illustrated in Figure 6.16. This velocity profile is non-uniform as a result of friction
between the fluid and the wall; the vorticity of this boundary layer is normal to the approach velocity c1
and of magnitude

ω1 ¼ dc1
dz

, ð6:51Þ

where z is distance from the wall.
The direction of ω1 follows from the right-hand screw rule and it will be observed that ω1 is in

opposite directions on the two annulus walls. This vector is turned by the cascade, thereby generating
secondary vorticity parallel to the outlet stream direction. If the deflection angle ε is not large, the mag-
nitude of the secondary vorticity ωs is, approximately,

ωs ¼ �2ε
dc1
dz

. ð6:52Þ

A swirling motion of the cascade exit flow is associated with the vorticity ωs, as shown in Figure 6.17,
which is in opposite directions for the two wall boundary layers. This secondary flow will be the inte-
grated effect of the distribution of secondary vorticity along the blade length.

Now if the variation of c1 with z is known or can be predicted, then the distribution of ωs along the
blade can be found using eqn. (6.52). By considering the secondary flow to be a small perturbation of
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the two-dimensional flow from the vanes, the flow angle distribution can be calculated using a series
solution developed by Hawthorne (1955). The actual analysis lies outside the scope (and purpose) of
this book, however. Experiments on cascade show excellent agreement with these calculations pro-
vided there are but small viscous effects and no flow separations. Such a comparison has been
given by Horlock (1963) and a typical result is shown in Figure 6.18. It is clear that the flow is over-
turned near the walls and underturned some distance away from the walls. It is known that this over-
turning is a source of inefficiency in compressors as it promotes stalling at the blade extremities.

Inlet velocity
profile

Inlet vorticity
of annulus wall
boundary layer

z
y
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�1

�1
�s
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�n1
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FIGURE 6.16

Secondary Vorticity Produced by a Row of Guide Vanes

FIGURE 6.17

Secondary Flows at Exit from a Blade Passage (Viewed in Upstream Direction)
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PROBLEMS

1. Derive the radial equilibrium equation for an incompressible fluid flowing with axisymmetric
swirl through an annular duct. Air leaves the inlet guide vanes of an axial flow compressor in
radial equilibrium and with a free-vortex tangenital velocity distribution. The absolute static pres-
sure and static temperature at the hub, radius 0.3 m, are 94.5 kPa and 293 K, respectively. At the
casing, radius 0.4 m, the absolute static pressure is 96.5 kPa. Calculate the flow angles at exit
from the vanes at the hub and casing when the inlet absolute stagnation pressure is 101.3 kPa.
Assume the fluid to be inviscid and incompressible. Take R¼ 0.287 kJ/(kg°C) for air.

2. A gas turbine stage has an initial absolute pressure of 350 kPa and a temperature of 565°C with
negligible initial velocity. At the mean radius, 0.36 m, conditions are as follows:

Nozzle exit flow angle 68°
Nozzle exit absolute pressure 207 kPa
Stage reaction 0.2

Determine the flow coefficient and stage loading factor at the mean radius and the reaction at the
hub, radius 0.31 m, at the design speed of 8000 rev/min, given that stage is to have a free-vortex
swirl at this speed. You may assume that losses are absent. Comment upon the results you obtain.
Take Cp¼ 1.148 kJ(kg°C) and γ¼ 1.33.

3. Gas enters the nozzles of an axial flow turbine stage with uniform total pressure at a uniform
velocity c1 in the axial direction and leaves the nozzles at a constant flow angle α2 to the
axial direction. The absolute flow leaving the rotor c3 is completely axial at all radii. Using radial
equilibrium theory and assuming no losses in total pressure show that

ðc23 � c21Þ=2 ¼ Umcθm2 1� r

rm

� �cos 2α2" #
,

where Um is the mean blade speed, cθm2 is the tangential velocity component at nozzle exit at the
mean radius r¼ rm. (Note: The approximate c3¼ c1 at r¼ rm is used to derive this expression.)
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4. Gas leaves an untwisted turbine nozzle at an angle α to the axial direction and in radial equili-
brium. Show that the variation in axial velocity from root to tip, assuming total pressure is con-
stant, is given by

cxr
sin2α ¼ constant.

Determine the axial velocity at a radius of 0.6 m when the axial velocity is 100 m/s at a radius of
0.3 m. The outlet angle α is 45°.

5. The flow at the entrance and exit of an axial-flow compressor rotor is in radial equilibrium. The
distributions of the tangential components of absolute velocity with radius are

cθ1 ¼ ar� b=r, before the rotor,

cθ2 ¼ ar þ b=r, after the rotor,

where a and b are constants. What is the variation of work done with radius? Deduce expressions
for the axial velocity distributions before and after the rotor, assuming incompressible flow the-
ory and that the radial gradient of stagnation pressure is zero. At the mean radius, r¼ 0.3 m, the
stage loading coefficient, ψ¼ΔW /U2

t is 0.3, the reaction ratio is 0.5, and the mean axial velocity
is 150 m/s. The rotor speed is 7640 rev/min. Determine the rotor flow inlet and outlet angles at a
radius of 0.24 m given that the hub–tip ratio is 0.5. Assume that at the mean radius the axial
velocity remained unchanged (cx1¼ cx2 at r¼ 0.3 m). (Note: ΔW is the specific work and Ut

the blade tip speed.)

6. An axial-flow turbine stage is to be designed for free-vortex conditions at exit from the nozzle
row and for zero swirl at exit from the rotor. The gas entering the stage has a stagnation tempera-
ture of 1000 K, the mass flow rate is 32 kg/s, the root and tip diameters are 0.56 m and 0.76 m,
respectively, and the rotor speed is 8000 rev/min. At the rotor tip the stage reaction is 50% and
the axial velocity is constant at 183 m/s. The velocity of the gas entering the stage is equal to that
leaving. Determine

(i) the maximum velocity leaving the nozzles;
(ii) the maximum absolute Mach number in the stage;
(iii) the root section reaction;
(vi) the power output of the stage;
(v) the stagnation and static temperatures at stage exit.

Take R¼ 0.287 kJ/(kg K) and Cp¼ 1.147 kJ/(kg K).

7. The rotor blades of an axial-flow turbine stage are 100 mm long and are designed to receive gas
at an incidence of 3 deg from a nozzle row. A free-vortex whirl distribution is to be maintained
between nozzle exit and rotor entry. At rotor exit the absolute velocity is 150 m/s in the axial
direction at all radii. The deviation is 5 deg for the rotor blades and zero for the nozzle blades
at all radii. At the hub, radius 200 mm, the conditions are as follows:

Nozzle outlet angle 70°
Rotor blade speed 180 m/s
Gas speed at nozzle exit 450 m/s
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Assuming that the axial velocity of the gas is constant across the stage, determine

(i) the nozzle outlet angle at the tip;
(ii) the rotor blade inlet angles at hub and tip;
(iii) the rotor blade outlet angles at hub and tip;
(vi) the degree of reaction at root and tip.

Why is it essential to have a positive reaction in a turbine stage?

8. The rotor and stator of an isolated stage in an axial-flow turbomachine are to be represented by
two actuator discs located at axial positions x¼ 0 and x¼ δ, respectively. The hub and tip dia-
meters are constant and the hub–tip radius ratio rh/rt is 0.5. The rotor disc considered on its own
has an axial velocity of 100 m/s far upstream and 150 m/s downstream at a constant radius
r¼ 0.75rt. The stator disc in isolation has an axial velocity of 150 m/s far upstream and 100
m/s far downstream at radius r¼ 0.75rt. Calculate and plot the axial velocity variation between
�0.5 � x/rt � 0.6 at the given radius for each actuator disc in isolation and for the combined
discs when (i) δ¼ 0.1rt, (ii) δ¼ 0.25rt, (iii) δ¼ rt.
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CHAPTER

Centrifugal Pumps, Fans,
and Compressors 7

And to thy speed add wings
Milton, Paradise Lost

7.1 INTRODUCTION
This chapter is concerned with the elementary flow analysis and preliminary design of radial-flow
work-absorbing turbomachines comprising pumps, low speed fans, and compressors. The major part
of the discussion is centred on the compressor since the basic action of all these machines is, in
most respects, the same.

Turbomachines employing centrifugal effects for increasing fluid pressure have been in use for
more than a century. The earliest machines using this method were hydraulic pumps followed later
by ventilating fans and blowers. Cheshire (1945) recorded that a centrifugal compressor was incorpo-
rated in the build of the Whittle turbojet engine. Figure 7.1 is a version of this compressor illustrating,
for that period, a rather complex flow path of the air. By way of contrast a modern centrifugal com-
pressor is shown as one component of a composite compressor of a jet engine in Figure 7.2.

Development of the centrifugal compressor for aircraft propulsion continued into the mid-1950s
but, long before this, it had become clear that axial flow compressors were better able to meet the
needs of larger engines. Not only were the frontal area (and drag) smaller with engines using axial
compressors but also the efficiency for the same duty was better by as much as 3 or 4%. However,
for very small compressors with low flow rates, the efficiency of axial compressors drops sharply,
blading is small and difficult to make accurately, and the centrifugal compressor is again the king.
Many applications are found in small gas turbines for road vehicles and commercial helicopters as
well as bigger applications, e.g., diesel engine turbochargers, chemical plant processes, factory work-
shop air supplies, large-scale air-conditioning plant, etc.

Centrifugal compressors were the choice for refrigerating plants and compression-type heat pumps
used in district heating schemes described by Hess (1985). These compressors with capacities ranging
from below 1 MW up to nearly 30 MW were preferred because of their good economy, low mainte-
nance and absolute reliability.

Palmer and Waterman (1995) gave some details of an advanced two-stage centrifugal compressor
used in a helicopter engine with a pressure ratio of 14, a mass flow rate of 3.3 kg/s, and an overall
total-to-total efficiency of 80%. Both stages employed backswept vanes (approximately 47°) with a

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00007-9
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low aerodynamic loading achieved by having a relatively large number of vanes (19 full vanes and
19 splitter vanes). Some basic details are given in this chapter of calculating the performance of centri-
fugal compressors with backward swept impeller vanes. Figure 7.3 is a picture of a compressor that feat-
ures a high performance centrifugal compressor impeller with 15 backswept main vanes (and 15 splitter
vanes) and its surrounding wedge diffuser is fitted with 24 vanes.

Diffuser
vanes

Rotating
guide
vanes

Impeller

FIGURE 7.1

A Version of the Centrifugal Compressor Used by Sir Frank Whittle (with Kind Permission of Rolls-Royce plc)
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Centrifugal
compressor

FIGURE 7.2

The Turbomeca Centrifugal Compressor Fitted to the RTM322 engine (with kind permission of Rolls-Royce plc)

FIGURE 7.3

An Axial-Radial Flow Compressor for Applications Requiring High Pressure Ratios and Intercooling (with Kind
Permission of Siemens AG)
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7.2 SOME DEFINITIONS
Most of the pressure-increasing turbomachines in use are of the radial-flow type and vary from fans that
produce pressure rises equivalent to a few millimetres of water to pumps producing pressure heads of
many hundreds of metres of water. The term pump refers to machines that increase the pressure of a flow-
ing liquid. The term fan is used for machines imparting only a small increase in pressure to a flowing gas.
In this case the pressure rise is usually so small that the gas can be considered as being incompressible.
A compressor gives a substantial rise in pressure to a flowing gas. Tomake a distinction a compressor can
be defined as a pressure-increasing machine were the density ratio across it is 1.05 or greater.

A centrifugal compressor or pump consists essentially of a rotating impeller followed by a diffuser.
Figure 7.4 shows diagrammatically the various elements of a centrifugal compressor. Fluid is drawn in
through the inlet casing into the eye of the impeller. The function of the impeller is to increase the
energy level of the fluid by whirling it outwards, thereby increasing the angular momentum of
the fluid. Both the static pressure and the velocity are increased within the impeller. The purpose of
the diffuser is to convert the kinetic energy of the fluid leaving the impeller into pressure energy.
This process can be accomplished by free diffusion in the annular space surrounding the impeller
or, as indicated in Figure 7.4, by incorporating a row of fixed diffuser vanes that allows the diffuser
to be made very much smaller. Outside the diffuser is a scroll or volute whose function is to collect the
flow from the diffuser and deliver it to the outlet pipe. Often, in low speed compressors and pump
applications where simplicity and low cost count for more than efficiency, the volute follows imme-
diately after the impeller.

Collector scroll

Diffuser vanes

Shroud

Eye

Impeller d b
Hub

c

Inducer
section

Impeller vane
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w2

c2

w1
�1

�2

c1�cx1

w�2

Direction of
rotationa

Cr2

U2

c�2

FIGURE 7.4

Centrifugal Compressor Stage and Velocity Diagrams at Impeller Entry and Exit
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The hub is the curved surface of revolution of the impeller a–b; the shroud is the curved surface c–d
forming the outer boundary to the flow of fluid. At entry to the impeller the relative flow has a velocity
w1 at angle β1 to the axis of rotation. This relative flow is turned into the axial direction by the inducer
section or rotating guide vanes as they are sometimes called. The inducer starts at the eye and usually
finishes in the region where the flow is beginning to turn into the radial direction. Some compressors of
advanced design extend the inducer well into the radial flow region, apparently to reduce the amount of
relative diffusion.

To simplify manufacture and reduce cost, many fans and pumps are confined to a two-dimensional
radial section as shown in Figure 7.5. With this arrangement some loss in efficiency can be expected.
For the purpose of greatest utility, relations obtained in this chapter are generally in terms of the three-
dimensional compressor configuration.

7.3 THERMODYNAMIC ANALYSIS OF A CENTRIFUGAL COMPRESSOR
The flow through a centrifugal compressor stage is a highly complicated three-dimensional motion and
a full analysis presents many problems. Fortunately, we can obtain approximate solutions by simplify-
ing the flow model, e.g., by adopting the so-called one-dimensional approach that assumes that the
fluid conditions are uniform over certain flow cross-sections. These cross-sections are conveniently
taken immediately before and after the impeller as well as at inlet and exit of the entire machine.
Where inlet vanes are used to give prerotation to the fluid entering the impeller, the one-dimensional
treatment is no longer valid and an extension of the analysis is then required. (Examples of three-
dimensional flows are given in Chapter 6.)

w2

w1

U2

U1

�2

�1
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c15 cr1

Direction of
rotation

cr2

FIGURE 7.5

Radial-Flow Pump and Velocity Triangles
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The Impeller
The general three-dimensional motion has components of velocity cr, cθ, and cx, respectively, in the
radial, tangential, and axial directions and c2 ¼ c2r þ c2θ þ c2x .

From eqn. (1.20a), rothalpy can be rewritten as

I ¼ hþ 1
2
ðc2r þ c2θ þ c2x � 2UcθÞ.

Adding and subtracting 1
2U

2 this becomes

I ¼ hþ 1
2
ðU2 � 2Ucθ þ c2θÞ þ

1
2
ðc2r þ c2x �U2Þ ¼ hþ 1

2
ðU� cθÞ2 þ 1

2
ðc2x þ c2r �U2Þ. ð7:1Þ

From the velocity triangle, Figure 7.4,U� cθ ¼ wθ, and withw2 ¼ c2r þ w2
θ þ c2x , eqn. (7.1) becomes

I ¼ hþ 1
2
w2 �U2

 �

or
I ¼ h0rel � 1

2
U2,

since h0rel ¼ h þ 1
2w

2. Across the impeller, I1 ¼ I2 so

h2 � h1 ¼ 1
2
U2

2 �U2
1


 �þ 1
2
w2
1 �w2

2


 �
. ð7:2Þ

This expression provides the reason why the static enthalpy rise in a centrifugal compressor is so
large compared with a single-stage axial compressor. On the right-hand side of eqn. (7.2), the second
term, 1

2 w2
1 �w2

2


 �
, is the contribution from the diffusion of relative velocity, also obtained for axial

compressors. The first term, 12 U2
2 �U2

1


 �
, is the contribution from the centrifugal action caused by the

change in radius. The relation between the enthalpies at state points 1 and 2 can be traced in Figure 7.6
with the aid of eqn. (7.2).

Referring to Figure 7.4, and in particular the inlet velocity diagram, the absolute flow has no whirl
component or angular momentum and cθ1¼ 0. In centrifugal compressors and pumps this is the normal
situation where the flow is free to enter axially. For such a flow the specific work done on the fluid,
from eqn. (1.18b), is written as

ΔW ¼ U2cθ2 ¼ h02 � h02 ð7:3Þ
in the case of compressors, and

ΔW ¼ U2cθ2 ¼ gHi ð7:4Þ
in the case of pumps, whereHi (the “ideal” head) is the total head rise across the pump excluding all inter-
nal losses. In high pressure ratio compressors it may be necessary to impart prerotation to the flow enter-
ing the impeller as a means of reducing a high relative inlet velocity. The effects of high relative velocity
at the impeller inlet are experienced as Mach number effects in compressors and cavitation effects in
pumps. The usual method of establishing prerotation requires the installation of a row of inlet guide
vanes upstream of the impeller, the location depending upon the type of inlet. Unless contrary statements
are made it will be assumed for the remainder of this chapter that there is no prerotation (i.e., cθ1 ¼ 0).

222 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



The Diffuser
The diffuser is an important element of a compressor or pump. Its purpose is to reduce the velocity of
the flow leaving the impeller resulting in an increase in pressure. The diffuser can be depicted as a
channel diverging in the direction of flow (see Figure 7.7).

Although the basic diffuser appears to be a geometrically simple device it is beset by two serious
fluid mechanical problems. The primary problem is the tendency of the boundary layers to separate
from the diffuser walls if the local rate of diffusion is too rapid resulting in flow mixing and large losses
in stagnation pressure. On the other hand, if the diffusion rate is too low, the fluid is exposed to a long
length of wall and fluid friction losses again become excessive. Clearly, there has to be an optimum
rate of diffusion between these two extremes for which the losses are minimised. Test results indicate
that a diffuser with an included angle of about 7° or 8° gives the optimum recovery for both
two-dimensional and conical diffusers.

Figure 7.8 shows the occurrence of flow unsteadiness or non-uniform flow at the exit from
two-dimensional diffusers. The line marked a–a will be of most interest for turbomachinery diffuser
applications. Note that this sharply marked transition line is not necessarily true and exact and a certain
amount of arbitrariness and subjectivity attends the occurrence of “first stall.”
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Mollier Diagram for the Compressor Stage (Impeller and Diffuser Only)
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Chart Depicting Flow Regimes for two-Dimensional Diffusers (Adapted from Sovran and Klomp, 1967)
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Figure 7.9 shows typical performance curves for a rectangular diffuser* with a fixed sidewall to
length ratio, L/W1 ¼ 8.0, given by Kline, Abbott, and Fox (1959). On the line labeled CP, points num-
bered 1, 2, and 3 are shown. These numbered points correspond to those shown in Figure 7.8 showing
where they lie in relation to the various flow regimes. Inspection of the location of point 2 shows that
optimum recovery at constant length occurs slightly above the line marked No appreciable stall. The
performance of the diffuser between points 2 and 3 in Figure 7.9 shows a very significant deterioration
and is in the regime of large amplitude, very unsteady flow.

7.4 DIFFUSER PERFORMANCE PARAMETERS
The diffusion process can be represented on a Mollier diagram, Figure 7.10, by a change of state from
point 1 to point 2, and the corresponding changes in pressure from p1 to p2 and velocity from c1 to c2.

Several ways are available for expressing diffuser performance in compressible flow:

(i) Diffuser efficiency, ηD ¼ ratio of actual change in enthalpy to the isentropic change in enthalpy.
For steady and adiabatic flow in stationary passages, h01¼ h02, so that

h2 ¼ h1 ¼ 1
2
c21 � c22

 �

. ð7:5aÞ
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FIGURE 7.9

Typical Diffuser Performance Curves for a Two-Dimensional Diffuser with L/W1 ¼ 8:0 (Adapted from
Kline et al., 1959)

*This information will be referred to in Appendix B, “The Preliminary Design of a Centrifugal Compressor.”
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For the equivalent reversible adiabatic process from state point 1 to state point 2s,

h2s � h1 ¼ 1
2
c21 � c22s

 �

. ð7:5bÞ

Hence,

ηD ¼ ðh2s � h1Þ=ðh2 � h1Þ ¼ ðh2 � h1Þ ¼ ðc21 � c22sÞ=ðc21 � c22Þ. ð7:6Þ

(ii) A total pressure recovery factor, p02/p01, can be used as a measure of diffuser performance. From
eqn. (7.6) the diffuser efficiency is

ηD ¼ ðT2s=T1 � 1Þ=ðT2=T1 � 1Þ. ð7:7Þ

It may be more convenient to represent this efficiency in terms of pressure ratios as follows:
For the isentropic process 1� 2s,

T2s
T1

¼ p2
p1

� �ðγ�1Þ=γ
.
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FIGURE 7.10

Mollier Diagram for a Diffuser Flow
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For the constant temperature process, 01� 02, we obtain Tds ¼ �dp/ρ, which, when combined
with the gas law, p/ρ ¼ RT, gives ds ¼ �Rdp/p. Upon integrating for the whole process we get

Δs ¼ R ln
p01
p02

� �
.

For the constant pressure process, 2s � 2, Tds¼ dh ¼CpdT, therefore,

Δs ¼ Cp ln
T2
T2s

� �
.

Equating these expressions for the entropy increase and using R/Cp � (γ� 1)/γ, we find

T2
T2s

¼ p01
p02

� �ðγ�1Þ=γ
.

Therefore,

T2
T1

¼ T2
T2s

� �
T2s
T1

� �
¼ p01

p02

� �
p2
p1

� �� �ðγ�1Þ=γ
.

Substituting these expressions into eqn. (7.7) we get

ηD ¼ ð p2=p1Þðγ�1Þ=γ � 1	ð p01=p02Þð p2=p1Þ
ðγ�1Þ=γ � 1
. ð7:8Þ

Example 7.1
Air enters the diffuser of a compressor with a velocity of 300 m/s at a stagnation pressure of 200 kPa and a stagna-
tion temperature of 200°C and leaves the diffuser with a velocity of 50 m/s. Using compressible flow relations and
assuming the diffuser efficiency, ηD ¼ 0.9, determine

(i) the static temperatures at inlet and outlet of the diffuser and the inlet Mach number;
(ii) the static pressure at diffuser inlet;
(iii) the increase in entropy caused by the diffusion process.

Take γ ¼ 1.4 and Cp ¼ 1005 J/kg K

Solution
Note: When solving diffuser problems it is advisable and always useful to make a sketch of the Mollier diagram of
the diffusion process. In this case we refer to Figure 7.10.

The expression for the diffuser efficiency, which is most useful for this example, is eqn. (7.7):

ηD ¼ ðT2s=T1 � 1Þ=ðT2=T1 � 1Þ.
From the energy equation, h01 � h1 ¼ 1

2 c
2
1 we obtain,

T1
T01

¼ 1� c21
2CpT01

¼ 1� 3002

2� 1050� 473
¼ 0:90533:
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Therefore,

T1 ¼ 428:2K as T ¼ 473K.

The Mach number at diffuser entry is

M1 ¼ c1=a1 where a1 ¼
ffiffiffiffiffiffiffiffiffiffi
γRT1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 428:2

p
¼ 414:8m=s.

Therefore,

M1 ¼ 0:7233:

Again, from the energy equation, h02 � h2 ¼ 1
2 c

2
2, hence,

T2
T02

¼ 1� c22
2CpT02

¼ 1� 502

2� 1050� 473
¼ 0:9974

and

T2 ¼ 471:7K.

From the diffuser efficiency definition above, we get

T2s
T1

¼ ηD
T2
T1

� 1

� �
þ 1 ¼ 1þ 0:9

471:7
428:2

� 1

� �
¼ 1:0915,

p2
p1

¼ T2s
T1

� �γ=ðγ�1Þ
¼ 1:09153:5 ¼ 1:3588,

p01
p1

¼ T02
T1

� �γ=ðγ�1Þ
¼ 473

428:2

� �3:5
¼ 1:4166:

Therefore,

p1 ¼ 141:2 kPa

and

p2 ¼ 1:3588� 141:2 ¼ 191:8 kPa:

From the thermodynamic relation, namely Tds ¼ dh � 1
ρ
dp, we obtain

s2 � s1 ¼ Cp ln
T2
T1

�R ln
p2
p1

¼ 1005ln
471:7
428:2

� 287ln1:3588 ¼ 97:2� 88:0 ¼ 9:2 J=kgK.

For incompressible flow (ρ ¼ constant) several expressions for performance parameters can be
obtained in terms of the pressure differences:

h2s � h1¼ðp2 � p1Þ=ρ,
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so that the diffuser efficiency can be written as

ηD¼2ðp2 � p1Þ=ρðc21 � c22Þ. ð7:9Þ
A pressure rise coefficient Cp can be defined

Cp¼ðp2 � p1Þ=q1, ð7:10Þ
where q1 ¼ 1

2 ρc
2
1.

The energy equation for the diffuser is

p1=ρþ 1
2
c21 ¼ p2=ρþ 1

2
c22 þ Δp0=ρ, ð7:11Þ

where Δp0 ¼ p01� p02 is the loss in total pressure in the diffuser. From the continuity equation

c1=c2 ¼ A2=A1 ¼ AR. ð7:12Þ
From eqn. (7.11), with Δp0 ¼ 0, an ideal pressure rise coefficient, Cp,id, can be defined

Cp,id ¼ 1�ðc2=c1Þ2 ¼ 1�ð1=A2
RÞ. ð7:13Þ

Thus, eqn. (7.10) can be written as

Cp ¼ Cp,id �Δp0=q1. ð7:14Þ
The diffuser efficiency is simply

ηD ¼ Cp=Cp,id. ð7:15Þ

7.5 INLET VELOCITY LIMITATIONS AT THE EYE
The inlet eye is an important and critical region in both centrifugal pumps and compressors and
requires careful consideration at the design stage. If the relative velocity of the inlet flow is too
large in pumps, cavitation (details in next section) may result with consequent blade erosion or
even reduced performance. In compressors large relative velocities can cause an increase in the impel-
ler total pressure losses. In high speed centrifugal compressors Mach number effects may become
important with high relative velocities in the inlet. By suitable sizing of the eye the maximum relative
velocity, or some related parameter (e.g., maximum relative Mach number), can be minimised to
give the optimum inlet flow conditions. As an illustration the following analysis shows a simple
optimization procedure for a low speed compressor based upon incompressible flow theory.

For the inlet geometry shown in Figure 7.4, the absolute eye velocity is assumed to be uniform and
axial. The inlet relative velocity is w1 ¼ ðc2x1 þ U2Þ1=2, which, of course, is a maximum at the inducer’s
tip. The volume flow rate is

Q ¼ cx1A1¼ πðr2s1 � r2h1Þðw2
s1 �Ω2r2s1Þ1=2. ð7:16Þ

It is worth noticing that with both Q and rh1 are fixed

(i) if rs1 is made large then, from continuity, the axial velocity is low but the blade speed is high;
(ii) if rs1 is made small the blade speed is small but the axial velocity is high.
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Both extremes produce large relative velocities and there must exist some optimum radius rs1 for which
the relative velocity is a minimum.

For maximum volume flow, differentiating eqn. (7.16) with respect to rs1 (keeping ws1 constant)
and equate to zero,

1
π

∂Q
∂rs1

¼ 0 ¼ 2rs1ðw2
s1 �Ω2r2s1Þ1=2 �ðr2s1 � r2h1ÞΩ2r2s1=ðw2

s1 �Ω2r2s1Þ1=2.

After simplifying,

2ðw2
s1 �Ω2r2s1Þ ¼ ðr2s1 � r2h1ÞΩ2;

therefore,

2c2x1 ¼ kU2
s1, ð7:17Þ

where k ¼ 1� (rh1/rs1)
2 and Us1 ¼ Ωrs1. Hence, the optimum inlet velocity coefficient is

� ¼ cx1=Us1 ¼ cot βs1 ¼ ðk=2Þ1=2. ð7:18Þ
Equation (7.18) specifies the optimum conditions for the inlet velocity triangles in terms of the

hub–tip radius ratio. For typical values of this ratio (i.e., 0.3 � rh1/rs1 � 0.6) the optimum relative
flow angle at the inducer tip βs1 lies between 56° and 60°.

7.6 OPTIMUM DESIGN OF A PUMP INLET
As discussed in Chapter 2, cavitation commences in a flowing liquid when the decreasing local static pres-
sure becomes approximately equal to the vapour pressure, pν. To be more precise, it is necessary to assume
that gas cavitation is negligible and that sufficient nuclei exist in the liquid to initiate vapour cavitation.

The pump considered in the following analysis is again assumed to have the flow geometry shown
in Figure 7.4. Immediately upstream of the impeller blades the static pressure is p1¼ p01 � 1

2 ρc
2
x1

where p01 is the stagnation pressure and cx1 is the axial velocity. In the vicinity of the impeller blades
leading edges on the suction surfaces there is normally a rapid velocity increase that produces a further
decrease in pressure. At cavitation inception the dynamic action of the blades causes the local pressure
to reduce such that p ¼ pv ¼ p1 � σb 1

2 ρw
2
1


 �
. The parameter σb is the blade cavitation coefficient cor-

responding to the cavitation inception point and depends upon the blade shape and the flow incidence
angle. For conventional pumps (Pearsall, 1972) that operate normally, this coefficient lies in the range
0.2 � σb � 0.4. Thus, at cavitation inception

p1 ¼ p01 � 1
2
ρc2x1 ¼ ρν þ σb

1
2
ρw2

1

� �
,

therefore

gHs ¼ p01 � ρνð Þ=ρ ¼ 1
2
c2x1 þ σb

1
2
w2
1

� �
¼ 1

2
c2x1 1þ σbð Þ þ 1

2
σbU

2
s1,

where Hs is the net positive suction head introduced earlier and it is implied that this is measured at the
shroud radius r ¼ rs1.

230 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



To obtain the optimum inlet design conditions consider the suction specific speed, defined as

Ωss ¼ ΩQ1=2/ðgHsÞ3=4, where Ω ¼ Us1/rs1 and Q ¼ cx1A1 ¼ πkr2s1cx1. Thus,

Ω2
ss

πk
¼ U2

s1cx1
1
2 c

2
x1 1þ σbð Þ þ 1

2 σbU
2
s1

	 
3=2 ¼ �

1
2 1þ σbð Þ�2 þ 1

2 σb
	 
3=2 , ð7:19Þ

where � ¼ cx1/Us1. To obtain the condition of maximum Ωss, eqn. (7.19) is differentiated with respect
to � and the result set equal to zero. From this procedure the optimum conditions are found:

� ¼ σb
2ð1þ σbÞ
� �1=2

, ð7:20aÞ

gHs ¼ 3
2
σb

1
2
U2

s1

� �
, ð7:20bÞ

Ω2
ss ¼

2πkð2=3Þ1:5
σbð1þ σbÞ0:5

¼ 3:420k

σbð1þ σbÞ0:5
. ð7:20cÞ

Example 7.2
The inlet of a centrifugal pump of the type shown in Figure 7.4 is to be designed for optimum conditions when the
flow rate of water is 25 dm3/s and the impeller rotational speed is 1450 rev/min. The maximum suction specific
speed Ωss ¼ 3.0 (rad) and the inlet eye radius ratio is to be 0.3. Determine

(i) the blade cavitation coefficient;
(ii) the shroud diameter at the eye;
(iii) the eye axial velocity;
(iv) the net positive suction head (NPSH).

Solution
(i) From eqn. (7.20c), squaring both sides,

σ2bð1þ σbÞ ¼ ð3:42kÞ2=Ω4
ss ¼ 0:1196,

with k ¼ 1 � (rh1/rs1)
2 ¼ 1� 0.32 ¼ 0.91. Solving iteratively (e.g., using the Newton–Raphson approxima-

tion), we get σb ¼ 0.3030.
(ii) As Q ¼ πkr2s1cx1 and cx1¼ �rs1Ω, r3s1¼ Q/ðπkΩ�Þ and, hence, Ω ¼ 1450π/30 ¼ 151.84 rad/s. From

eqn. (7.20a), � ¼ [0.303/(2 � 1.303)]0.5¼ 0.3410,

r3s1 ¼ 0:025=ðπ� 0:91� 151:84� 0:341Þ ¼ 1:689� 10�4,

rs1 ¼ 0:05528m.

The required diameter of the eye is 110.6 mm.
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(iii) cx1 ¼ �Ωrs1 ¼ 0.341� 151.84� 0.05528 ¼ 2.862 m/s.
(iv) From eqn. (7.20b), the net positive suction head (NPSH) is

Hs ¼ 0:75σbc2x1
g�2 ¼ 0:75� 0:303� 2:8622

9:81� 0:3412
¼ 1:632m.

7.7 OPTIMUM DESIGN OF A CENTRIFUGAL COMPRESSOR INLET
To obtain high efficiencies from high pressure ratio compressors it is necessary to limit the relative
Mach number at the eye. In the following paragraphs two analyses are given, the first for an axial
flow at inlet, α1¼ 0°, and the second when prewhirl vanes are used and α1> 0°. The analyses are
applied to the shroud radius rs1 at the impeller eye.

Case A (α1 ¼ 0°)
The flow area at the eye is

A1 ¼ πr2s1k,

where k ¼ 1�(rh1/rs1)
2. Hence,

A1 ¼ πkU2
s1=Ω

2 ð7:21Þ
with Us1 ¼ Ωrs1. Assuming a uniform axial velocity, the continuity equation is, _m ¼ ρ1A1cx1.

From the inlet velocity diagram (Figure 7.4), cx1 ¼ ws1cosβs1 andUs1 ¼ ws1sinββs1. Using eqn. (7.21),

_mΩ2

ρ1kπ
¼ w3

s1sin
2βs1cos βs1. ð7:22Þ

For a perfect gas the static density ρ is

ρ ¼ ρ0
p

p0

� �
T0
T

� �
.

With CpT0 ¼ CpTþ 1
2c

2 and Cp ¼ γR/(γ� 1),

T0
T

¼ 1þ γ� 1
2

M2 ¼ a20
a2

,

where the Mach number, M ¼ c /(γRT)1/2 ¼ c /a, a0 and a being the stagnation and local (static) speeds
of sound. For isentropic flow,

p

p0
¼ T

T0

� �γ=ðγ�1Þ
.

Thus,

ρ1
ρ0

¼ T1
T0

� �1�γ=ðγ�1Þ
¼ 1þ γ� 1

2
M2

1

� ��1=ðγ�1Þ
,

where ρ0 ¼ p0/(RT0).
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The absolute Mach number M1 and the relative Mach number M1,rel are defined as

M1¼cx1=a1¼M1,relcos βs1 and ws1 ¼ M1,rela1.

Using these two relations together with eqn. (7.10) we obtain

_mΩ2RT01
kπp01

¼ M3
1,rela

3
1

1þ 1
2 γ� 1ð ÞM2

1

	 
1=ðγ�1Þ sin
2βs1cos βs1.

Since a01=a1 ¼ 1þ 1
2ðγ� 1ÞM2

1

	 
1=2
and a01 ¼ (γRT01)

1/2 this equation is reworked to give

_mΩ2

γπkp01ðγRT01Þ1=2
¼ M3

1,relsin
2βs1cos βs1

1þ 1
2 γ� 1ð ÞM2

1,relcos
2βs1

	 
1=ðγ�1Þþ3=2
. ð7:23aÞ

Although it looks cumbersome the preceding equation is really quite useful. For a particular gas, by
specifying values of γ, R, p01, and T01, we obtain _mΩ2/k as a function of M1,rel and βs1. Choosing a par-
ticular value of M1,rel as a limit, an optimum value of βs1 for maximum mass flow can then be found.

Taking air as an example and assuming γ ¼ 1.4, eqn. (7.23a) becomes

f M1,rel, βs1ð Þ ¼ _mΩ2= 1:4πkp01a01ð Þ ¼ M3
1,relsin

2βs1 cos βs1

1þ 1
5M

2
1,relcos

2βs1

 �4 . ð7:24aÞ

The right-hand side of eqn. (7.24a) is plotted in Figure 7.11 as a function of βs1 forM1,rel ¼ 0.8 and 0.9.
It can be shown that these curves are a maximum when

cos 2βs1 ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 1=M2

1,rel

q
,

where A ¼ 0:7þ 1:5=M2
1,rel.

Case B (α1 > 0°)
The effect of prewhirl on the mass flow function can be determined by a similar analysis. From the
velocity triangles in Figure 7.4,

c1 ¼ cx=cosα1 ¼ w1cosβ1=cosα1,

_m ¼ ρAcr ¼ 2πrbρcr

Also, U1 ¼ w1sin β1þ c1sinα1 ¼ w1 cos β1(tan β1þ tanα1),

_m ¼ ρ1A1cx1.

It is better to refer to the shroud radius rs1 from this point on. Following the previous procedure we get

_m ¼ πk

Ω2 ρ1U
2
s1ws1cos βs1 ¼

πkρ1
Ω2

� �
w3
1cos

3βs1ðtan βs1 þ tan αs1Þ2.

Using the relations developed earlier for T01/T1, p01/p1, and ρ01/ρ1, we obtain

f M1,rel, βs1ð Þ ¼ _mΩ2

πkρ01a
3
01

¼ M3
1,relcos

3βs1ðtan βs1 þ tanαs1Þ2

1þ γ� 1
2 M2

1,relcos
2βs1=cos 2αs1


 � 1
γ� 1þ 3

2

. ð7:23bÞ
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Substituting γ ¼ 1.4 for air into eqn. (7.12) we get

f M1,relð Þ ¼ Ω2 _m

πkρ01a
3
01

¼ M3
1,relcos

3 βs1ðtan βs1 þ tan αs1Þ2

1þ 1
5M

2
1,rel cos

2βs1=cos2αs1

 �4 . ð7:24bÞ

The right-hand side of eqn. (7.24b) is plotted in Figure 7.11 with α1 ¼ 30° and M1,rel ¼ 0.8 and 0.9,
showing that the peak values of _mΩ2/k are significantly increased but arise at much lower values of βs1.

Example 7.3
The inlet of a centrifugal compressor is fitted with free-vortex guide vanes to provide a positive prewhirl of 30° at
the shroud. The inlet hub–shroud radius ratio is 0.4 and a requirement of the design is that the relative inlet Mach
number, M1,rel, does not exceed 0.9. The air mass flow is 1 kg/s, the stagnation pressure and temperature are
101.3 kPa and 288 K. For air take R ¼ 287 J/(kgK) and γ ¼ 1.4.

Assuming optimum conditions at the shroud, determine

(i) the rotational speed of the impeller;
(ii) the inlet static density downstream of the guide vanes at the shroud and the axial velocity;
(iii) the inducer tip diameter and velocity.
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FIGURE 7.11

Variation of Mass Flow Function f (M1,rel) as a Function of βs1 for the Inducer of a Centrifugal Compressor: Case A,
No Guide Vanes, α1 = 0, Case B, with Guide Vanes, α1 > 0.
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Solution
(i) From Figure 7.9, the peak value of f (M1,rel) ¼ 0.4307 at a relative flow angle β1 ¼ 49.4°. The constants

needed are a01
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p ¼ 340:2 m/s, ρ01 ¼ p01/RT01 ¼ 1.2255 kg/m3, and k ¼ 1� 0.42 ¼ 0.84. From eqn.
(7.24b), we find Ω2 ¼ πfkρ01a

3
01 ¼ 5:4843� 107. Hence,

Ω ¼ 7405:6 rad=s andN ¼ 70, 718 rev=min.

(ii) ρ1 ¼
ρ01

1þ 1
5
ðM1,relcos β1Þ2

� �2:5 ¼ 1:2255

1:069732:5
¼ 0:98464 kg=m3:

The axial velocity is found from

ðw1 cos β1Þ3 ¼ c3x ¼
Ω2 _m

πkρ1ðtan β1 þ tan α1Þ2
¼ 5:4843� 107

π� 0:84� 0:98464� 3:0418
¼ 6:9388� 106,

therefore,

cx ¼ 190.73 m=s.

(iii)
A1 ¼ _m

ρ1cx
¼ πkr2s1,

therefore,

r2s1 ¼
_m

πρ1cxk
¼ 1

π� 0:98464� 190:73� 0:84
¼ 2:0178� 10� 3,

rs1 ¼ 0:04492 m and ds1 ¼ 8:984 cm,

U ¼ Ωrs1 ¼ 7405:6� 0:04492 ¼ 332:7 m=s.

Some Remarks on the Use of Prewhirl Vanes at Entry to the Impeller
Introducing positive prewhirl (i.e., in the direction of impeller rotation) can give a significant reduction
of w1 and the inlet Mach number M1,rel but, as can be seen from the Euler pump equation, eqn. (1.18b),
it reduces the specific work done on the gas. Thus, it is necessary to increase the blade tip speed to
maintain the same level of impeller pressure ratio as was obtained without prewhirl.

Prewhirl is obtained by fitting guide vanes upstream of the impeller. One arrangement for doing this
is shown in Figure 7.12(a). The velocity triangles, Figures 7.12(b) and 7.12(c), suggest how the guide
vanes reduce the relative inlet velocity. Guide vanes are designed to produce either a free-vortex or
some form of forced-vortex velocity distribution. In Chapter 6 it was shown that for a free-vortex
flow (rcθ ¼ constant) the axial velocity cx is constant (in the ideal flow). It was shown by Wallace,
Whitfield, and Atkey (1975) that the use of free-vortex prewhirl vanes leads to a significant increase
in incidence angle with low inducer radius ratios. The use of some forced-vortex velocity distribution
does alleviate this problem. Whitfield and Baines (1990) have reviewed some of the effects resulting
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from the adoption of various forms of a generalised forced-vortex,

cθ ¼ A
r

rs1

� �n

, ð7:25Þ

where n is any integer value in the range �1 to 2.
Figure 7.13(a) shows (for a particular case in which αs1 ¼ 30°, βs1 ¼ 60°) the effect of prewhirl on

the variation of the incidence angle, i ¼ β1 � β
0
2 with radius ratio, r/rs1, for several whirl distributions.

Figure 7.13(b) shows the corresponding variations of the absolute flow angle, α1. It is apparent that a
high degree of prewhirl vane twist is required for either a free-vortex design or for the quadratic (n ¼ 2)
design. The advantage of the quadratic design is the low variation of incidence with radius, whereas it
is evident that the free-vortex design produces a wide variation of incidence. Wallace et al. (1975)
adopted the simple untwisted blade shape (n ¼ 0), which proved to be a reasonable compromise.

7.8 SLIP FACTOR
Introduction
Even under ideal (i.e., frictionless) conditions the relative flow leaving the impeller of a compressor or
pump will receive less than perfect guidance from the vanes and the real flow is said to slip. If the
impeller could be imagined as being made with an infinite number of infinitesimally thin vanes,
then an ideal flow would be perfectly guided by the vanes and would leave the impeller at the vane
angle. Figure 7.14 compares the relative flow angle, β2, obtained with a finite number of vanes,
with the vane angle, β

0
2.
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FIGURE 7.12

Effect of Free-Vortex Prewhirl Vanes upon the Relative Velocity at Impeller Inlet
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A slip factor may be defined as

σ ¼ cθ2=cθ20 , ð7:26aÞ
where cθ2 is the tangential component of the absolute velocity and related to the relative flow angle β2.
The hypothetical tangential velocity component cθ20 is related to the vane angle β

0
2. The slip velocity is

given by cθs ¼ cθ20 � cθ2 so that the slip factor can be written as

σ ¼ 1� cθs=cθ20 . ð7:26bÞ
The slip factor is a vital piece of information needed by pump and compressor designers (also by
designers of radial turbines as it turns out!) as its accurate estimation enables finding the correct
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value of the energy transfer between impeller and fluid. Various attempts to determine values of slip
factor have been made and numerous research papers concerned solely with this topic have been pub-
lished. Wiesner (1967) has given an extensive review of the various expressions used for determining
slip factors. Most of the expressions derived relate to radially vaned impellers ðβ 0

2 ¼ 0Þ or to mixed
flow designs, but some are given for backward swept vane (bsv) designs. All of these expressions
are derived from inviscid flow theory even though the real flow is far from ideal. However, despite
this apparent lack of a realistic touch in the flow modelling, the fact remains that good results are
still obtained with the various theories.

The Relative Eddy Concept
Suppose that an irrotational and frictionless fluid flow is possible that passes through an impeller. If the
absolute flow enters the impeller without spin, then at outlet the spin of the absolute flow must still be
zero. The impeller itself has an angular velocity Ω so that, relative to the impeller, the fluid has an
angular velocity of �Ω; this is termed the relative eddy. A simple explanation for the slip effect in
an impeller is obtained from the idea of a relative eddy.

At outlet from the impeller the relative flow can be regarded as a through-flow on which is super-
imposed a relative eddy. The net effect of these two motions is that the average relative flow emerging
from the impeller passages is at an angle to the vanes and in a direction opposite to the blade motion, as
indicated in Figure 7.15. This is the basis of the various theories of slip.

Slip Factor Correlations
One of the earliest and simplest expressions for the slip factor was obtained by Stodola (1945). Refer-
ring to Figure 7.16 the slip velocity, cθs ¼ cθ20 � cθ2, is considered to be the product of the relative eddy
and the radius d/2 of a circle, which can be inscribed within the channel. Thus, cθs ¼ Ωd/2. If the num-
ber of vanes is denoted by Z then an approximate expression, d @ ð2πr2/ZÞcosβ 0

2, can be written if Z is
not small. Since Ω ¼ U2/r2,

(b)(a)

2V

V V

FIGURE 7.15

(a) Relative Eddy without Any Through-Flow; (b) Relative Flow at Impeller Exit (Through-Flow Added to
Relative Eddy)
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cθs ¼ πU2cosβ
0
2

Z
. ð7:26cÞ

Now as c
0
θ2 ¼ U2 � cr2tan β

0
2 the Stodola slip factor becomes

σ ¼ cθ2
c0
θ2

¼ 1� cθs
U2 � cr2tan β

0
2

ð7:27Þ

or

σ ¼ 1� ðπ=ZÞcos β0
2

1��2tan β
0
2

. ð7:28Þ

where �2 ¼ cr2/U2.
A number of “mathematically exact” solutions have been evolved of which the best known is that

of Busemann (1928). This theory applies to the special case of two-dimensional vanes curved as loga-
rithmic spirals as shown in Figure 7.17.

Considering the geometry of the vane element shown it can be proved that

κ ¼ tan β
0
lnðr2=r1Þ ð7:29Þ

and that the ratio of vane length to equivalent blade pitch is

l

s
¼ Z

2π cos β
0 ln

r2
r1

� �
. ð7:30Þ

2�r2/Z ��2

d

FIGURE 7.16

Flow Model used by Stodola for His Slip Factor
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Hence, the equivalent pitch is

s ¼ 2πðr2 � r1Þ
Z lnðr2=r1Þ . ð7:31Þ

The equiangular or logarithmic spiral is the simplest form of radial vane system and has been fre-
quently used for pump impellers in the past. The Busemann slip factor can be written as

σ ¼ ðA�B�2tan β
0
2Þ=ð1��2tan β

0
2Þ. ð7:32Þ

where both A and B are functions of r2/r1, β
0
2, and Z. For typical pump and compressor impellers the

dependence of A and B on r2/r1 is negligible when the equivalent l/s exceeds unity. From eqn. (7.30)
the requirement for l/s 
 1, is that the radius ratio must be sufficiently large, i.e.,

r2=r1 
 expð2π cos β0
=ZÞ. ð7:33Þ

This criterion is often applied to other than logarithmic spiral vanes, then β
0
2 is used instead of β

0
.

Radius ratios of typical centrifugal pump impeller vanes normally exceed the preceding limit. For
instance, blade outlet angles of impellers are usually in the range 50° ≤ β

0
2 ≤ 70° with between

5 and 12 vanes. Taking representative values of β
0
2 ¼ 60° and Z ¼ 8 the right-hand side of

eqn. (7.33) is equal to 1.48, which is not particularly large for a pump.
So long as these criteria are obeyed the value of B is constant and practically equal to unity for all

conditions. Similarly, the value of A is independent of the radius ratio r2/r1 and depends on β
0
2 and Z

only. Values of A given by Csanady (1960) are shown in Figure 7.18 and may also be interpreted as the
value of σB for zero through-flow (�2 ¼ 0).

The exact solution of Busemann makes it possible to check the validity of approximate methods of
calculation, such as the Stodola expression. By putting �2 ¼ 0 in eqns. (7.28) and (7.32) a comparison
of the Stodola and Busemann slip factors at the zero through-flow condition can be made. The Stodola

dr

rd�

rd� 5 tan �9dr dl 5 dr sec �9

dl

�9

�9

�9

�9

r2

r1
�

� 5 �22 �1

r

FIGURE 7.17

Logarithmic Spiral Vane; Vane Angle β0 Is Constant for All Radii
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value of slip comes close to the exact correction if the vane angle is within the range 50° ≤ β
0
2 ≤ 70°

and the number of vanes exceeds six.
Stanitz (1952) applied the mathematical method called relaxation to solve the potential flow field

between the blades of eight impellers with blade tip angles β
0
2 varying between 0° and 45°. The con-

clusions drawn were that the computed slip velocity cθs was independent of vane angle β
0
2 and

depended only on blade spacing (number of blades). He also found that compressibility effects did
not affect the slip factor. Stanitz’s expression for slip velocity is

cθs ¼ 0:63U2π=Z, ð7:34aÞ
and it is easily shown that the corresponding slip factor using eqn. (7.27) is

σ ¼ 1� 0:63π=Z

1��2tan β
0
2

. ð7:34bÞ

For radial vaned impellers this becomes σ ¼ 1 � 0.63π/Z but is often written for initial approximate
calculations as σ ¼ 1 � 2/Z.

Wiesner (1967) reviewed all available methods and concluded that Busemann’s procedure was still
the most generally applicable predictor for determining the slip factor of centripetal impellers. Wiesner
obtained the following simple empirical expression for the slip velocity,

cθs ¼
U2

ffiffiffiffiffiffiffiffiffiffiffiffi
cos β

0
2

q
Z0:7

. ð7:35aÞ
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��2

FIGURE 7.18

Head Correction Factors for Centrifugal Impellers (Adapted from Csanady, 1960)
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and the corresponding slip factor,

σ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos β

0
2=Z

0:7
q
ð1��2tan β

0
2Þ
, ð7:35bÞ

which, according to Wiesner, fitted the Busemann results “extremely well over the whole range of
practical blade angles and number of blades.”

The preceding equation is applicable to a limiting mean radius ratio for the impeller given by the
empirical expression

ε ¼ r1
r2

� �
lim

¼ exp
�8:16 cos β

0
2

Z

 !
. ð7:35cÞ

For values of r1/r2 > ε the following empirical expression is useful:

σ
0
w ¼ σw 1� r1=r2 � ε

1� ε

� �3" #
. ð7:35dÞ

7.9 HEAD INCREASE OF A CENTRIFUGAL PUMP
The actual delivered head H, measured as the head difference between the inlet and outlet flanges
of the pump and sometimes called the manometric head, is less than the ideal head Hi defined by
eqn. (7.4) by the amount of the internal losses. The hydraulic efficiency of the pump is defined as

ηh ¼
H

Hi
¼ gH

U2cθ2
. ð7:36aÞ

From the velocity triangles of Figure 7.5,

cθ2 ¼ U2 � cr2tanβ2.

Therefore,

H ¼ ηhU
2
2ð1��2tanβ2Þ=g, ð7:36bÞ

where �2 ¼ cr2/U2 and β2 is the actual averaged relative flow angle at impeller outlet.
With the definition of slip factor, σ ¼ cθ2=c

0
θ2, H can, more usefully, be directly related to the impel-

ler vane outlet angle as

H ¼ ηh σU
2
2ð1��2tanβ

0
2Þ=g. ð7:36cÞ

In general, centrifugal pump impellers have between 5 and 12 vanes inclined backwards to the
direction of rotation, as suggested in Figure 7.5, with a vane tip angle β

0
2 of between 50° and 70°.

A knowledge of blade number, β
0
2 and �2 (usually small and on the order of 0.1) generally enables

σ to be found using the Busemann formula. The effect of slip, it should be noted, causes the relative
flow angle β2 to become larger than the vane tip angle β

0
2.

242 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



Example 7.4
A centrifugal pump delivers 0.1 m3/s of water at a rotational speed of 1200 rev/min. The impeller has seven vanes,
which lean backwards to the direction of rotation such that the vane tip angle β

0
2 is 50°. The impeller has an exter-

nal diameter of 0.4 m, an internal diameter of 0.2 m, and an axial width of 31.7 mm. Assuming that the diffuser
efficiency is 51.5%, that the impeller head losses are 10% of the ideal head rise, and that the diffuser exit is 0.15 m
in diameter, estimate the slip factor, the manometric head and the hydraulic efficiency.

Solution
The criterion given as eqn. (7.35c) is employed prior to estimating the slip factor. As expð2π cos β0

2/ZÞ ¼
expð2π� 0:643/7Þ ¼ 1:78 (which is less than r2/r1 ¼ 2) then B ¼ 1 and A ≈ 0.77. Note: This value of A is
obtained by replotting values of A given in Figure 7.18 for β

0
2 ¼ 50° and interpolating.

The vane tip speed

U2 ¼ πND2=60 ¼ π� 1200� 0:4=6 ¼ 25:13m=s.

The radial velocity

cr2 ¼ Q=ðπD2b2Þ ¼ 0:1=ðπ� 0:4� 0:0317Þ ¼ 2:51m=s.

Hence, the Busemann slip factor is

σ ¼ ð0:77� 0:1� 1:192Þ=ð1� 0.1� 1.192Þ ¼ 0:739.

Hydraulic losses occur in the impeller, in the diffuser, and in the volute. The loss in head in the diffuser is

ΔHD ¼ ð p02 � p03Þ=ð ρgÞ ¼ ð p2 � p3Þ=ð ρgÞ þ ðc22 � c23Þ=ð2gÞ
and, from eqn. (7.9),

p3 � p2 ¼ 1
2
ηDρðc22 � c23Þ.

Substituting in the previous line, we find

ΔHD ¼ ð1� ηDÞðc22 � c23Þ=ð2gÞ.
The kinetic energy leaving the diffuser is only partly recovered. Watson and Janota (1982) ascribe the total loss

in the volute as about half the dynamic head leaving the diffuser, and this is also assumed in this calculation. The
exit head loss is 0:5� c23=ð2gÞ and the head loss in the impeller is 0.1 � U2cθ2/g.

Summing all the losses,

HL ¼ 0:485�ðc22 � c23Þ=ð2gÞ þ 0:1�U2cθ2=gþ 0:5� c23=ð2gÞ.
Determining the velocities and heads needed,

cθ2 ¼ σU2ð1��2 tan β20Þ ¼ 0:739� 25:13� 0:881 ¼ 16:35m=s.

Hi ¼ U2cθ2=g ¼ 25:13� 16:35=9:81 ¼ 41:8m.

c22=ð2gÞ ¼ ð16:352 þ 2:512Þ=19:62 ¼ 13:96m.

c3 ¼ 4Q=ðπd2Þ ¼ 0:4=ðπ� 0:152Þ ¼ 5:65m=s.

c23=ð2gÞ ¼ 1:63m.
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Therefore,

HL ¼ 4:18þ 0:485ð13:96� 1:63Þ þ 1:63=2 ¼ 10:98m.

The manometric head is

H ¼ Hi �HL ¼ 41:8� 10:98 ¼ 30:82m

and the hydraulic efficiency is

ηh ¼ H=Hi ¼ 73.7%.

7.10 PERFORMANCE OF CENTRIFUGAL COMPRESSORS
Determining the Pressure Ratio
Consider a centrifugal compressor having zero inlet swirl, compressing a perfect gas. With the usual
notation the energy transfer is

ΔW ¼ _Wc= _m ¼ h02 � h01 ¼ U2cθ2.

The overall or total-to-total efficiency ηc is

ηc ¼
h03ss � h01
h03 � h01

¼ CpT01ðT03ss=T01 � 1Þ
h02 � h01

¼ CpT01ðT03ss=T01 � 1Þ=ðU2cθ2Þ. ð7:37Þ

Now the overall pressure ratio is

p03
p01

¼ T03ss
T01

� �γ=ðγ�1Þ
. ð7:38Þ

Substituting eqn. (7.37) into eqn. (7.38) and noting that CpT01¼ γRT01=ðγ� 1Þ ¼ a201=ðγ� 1Þ, the
pressure ratio becomes

p03
p01

¼ 1þ ðγ� 1ÞηcU2cr2 tan α2
a201

� �γ=ðγ�1Þ
. ð7:39Þ

From the velocity triangle at impeller outlet (Figure 7.4),

�2 ¼ cr2=U2 ¼ ðtanα2 þ tanβ2Þ�1

and, therefore,

p03
p01

¼ 1þ ðγ� 1ÞηcU2
2 tan α2

a201ðtan α2 þ tan β2Þ
� �γ=ðγ�1Þ

. ð7:40aÞ

This formulation is useful if the flow angles can be specified. Alternatively, and more usefully, as
cθ2 ¼ σcθ20 ¼ σðU2 � cr2 tan β

0
2Þ, then

p03
p01

¼ ½1þ ðγ� 1Þηcσð1��2 tan β
0
2ÞM2

u�γ=ðγ�1Þ, ð7:40bÞ

where Mu ¼ U2/a01 is now defined as a blade Mach number.
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It is useful and of interest to calculate the variation of the pressure ratio of a radially vaned ðβ0
2 ¼ 0Þ

centrifugal air compressor to show the influence of blade speed and efficiency on the performance.
With γ ¼ 1.4 and σ ¼ 0.9 (i.e., using the Stanitz slip factor, σ ¼ 1� 1.98/Z) and assuming Z ¼ 20,
the results evaluated are shown in Figure 7.19. It is clear that both the efficiency and the blade
speed have a strong effect on the pressure ratio.

In the 1970s the limit on blade speed due to centrifugal stress was about 500 m/s and compressor
efficiency seldom exceeded 80%. With a slip factor of 0.9, a radial vaned impeller and an inlet tem-
perature of 288 K, the pressure ratio achieved was barely above 5. More recently quite significant
improvements in the performance of centrifugal compressors have been obtained, brought about by
the development of computer-aided design and analysis techniques. According to Whitfield and Baines
(1990) the techniques employed consist of “a judicious mix of empirical correlations and detailed
modelling of the flow physics”! However, it is possible to use these computer packages and arrive
at a design solution without any real appreciation of the flow phenomena involved. In all compressors
the problematic part of the flow process is the diffusion; boundary layers are very prone to separate and
the flow can become very complicated with separated wakes in the flow and unsteady flow down-
stream of the impeller. It must be stressed that a broad understanding of the flow processes within
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FIGURE 7.19

Variation of Pressure Ratio with Blade Speed for a Radial-Bladed Compressor ðβ′2 ¼ 0Þ at Various Values of
Efficiency
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a centrifugal compressor is still a vital requirement for the more advanced student and for the further
progress of new design methods.

A characteristic of all high performance compressors is that as the design pressure ratio has
increased, so the range of mass flow between surge and choking has diminished. In the case of the
centrifugal compressor, choking can occur when the Mach number entering the diffuser passages is
just in excess of unity. This is a severe problem that is aggravated by any shock-induced separation
of the boundary layers on the vanes, which will worsen the problem of flow blockage.

Effect of Backswept Vanes
Came (1978) and Whitfield and Baines (1990) have commented upon the trend of obtaining higher pres-
sure ratios from single-stage compressors leading to more highly stressed impellers. The increasing use
of backswept vanes and higher blade tip speeds result in higher direct stress in the impeller and bending
stress in the non-radial vanes. However, methods of computing the stresses in impellers are available,
capable of determining both the direct and the bending stresses caused by the impeller rotation.

The effect of using backswept impeller vanes on the pressure ratio is shown in Figure 7.20 for a
range of blade Mach numbers. The use of backswept vanes at a given blade speed causes some loss
in pressure ratio. In order to maintain a given pressure ratio it is therefore necessary to increase the
design speed, which increases the blade stresses.
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FIGURE 7.20

Variation of Pressure Ratio versus Blade Mach Number of a Centrifugal Compressor for Selected Backsweep
Angles (γ = 1.4, ηc = 0.8, σ = 0.9, �2 = 0.375)
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With high blade tip speeds the Mach number of the absolute flow leaving the impeller may exceed
unity. As this Mach number can be related to the Mach number at entry to the diffuser vanes, it is of
some advantage to be able to calculate the former.

Assuming a perfect gas the Mach number at impeller exit M2 can be written as

M2
2 ¼

c22
a22

¼ c22
T01

� T01
T2

� T2
a22

¼ c22
a201

T01
T2

, ð7:41Þ

since a201 ¼ γRT01 and a22 ¼ γRT2.

Referring to the outlet velocity triangle, Figure 7.14 (for the impeller with back swept vanes),

c22 ¼ c2r2 þ c2θ2 ¼ c2r2 þ ðσcθ20Þ2,
where

cθ20 ¼ U2 � cr2 tan β20 ,

c2
U2

� �2
¼ �2

2 þ σ2ð1��2 tan β20 Þ2. ð7:42Þ

Assuming that rothalpy remains constant, eqn. (7.2), gives

h2 ¼ h1 þ 1
2
w2
1 �

1
2
U2

1

� �
þ 1
2
ðU2

2 �w2
2Þ ¼ h01 þ 1

2
ðU2

2 �w2
2Þ,

hence,

T2
T01

¼ 1þ ðU2
2 �w2

2Þ
a201=ðγ� 1Þ ¼ 1þ 1

2
γ� 1ð ÞM2

u 1� w2
2

U2
2

� �
, ð7:43Þ

since h01 ¼ CpT01 ¼ a201=ðγ� 1Þ.
From the exit velocity triangle, Figure 7.14,

w2
2 ¼ c2r2 þ ðU2 � cθ2Þ2 ¼ c2r2 þ ðU2 � σcθ20 Þ2

¼ c2r2 þ ½U2 � σðU2 � cr2 tan β
0
2Þ�2,

ð7:44Þ

1� w2

U2

� �2

¼ 1��2
2 � ½1� σð1��2 tan β

0
2Þ�2. ð7:45Þ

Substituting eqns. (7.42), (7.43), and (7.45) into eqn. (7.41), we get

M2
2 ¼

M2
u½σ2ð1��2 tan β20 Þ2 þ �2

2�
1þ 1

2 γ� 1ð ÞM2
uf1��2

2 � ½1� σð1��2 tan β20 Þ�2g
. ð7:46aÞ

Although eqn. (7.46a) looks rather complicated at first sight it reduces into an easily managed form
when a few constant values are inserted. Assuming the same values we used previously, i.e.,
γ ¼ 1.4, σ ¼ 0.9, �2 ¼ 0.375, and β

0
2 ¼ 0°, 15°, 30° and 45°, the solution for M2 simplifies to

M2 ¼ AMuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ BM2

u

q , ð7:46bÞ
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where the values of A and B are given in Table 7.1, and from which the curves of M2 against Mu in
Figure 7.21 have been calculated.

Whitfield and Baines (1990) assert that the two most important aerodynamic parameters at impeller
exit are the magnitude and direction of the absolute Mach number M2. If M2 has too high a value, the
process of efficient flow deceleration within the diffuser itself is more difficult leading to high friction
losses as well as the increased possibility of shock losses. If the flow angle α2 is large the flow path in
the vaneless diffuser will be excessively long resulting in high friction losses and possible stall and
flow instability. Several researchers, e.g., Rodgers and Sapiro (1972), have shown that the optimum
flow angle is in the range 60°< α2< 70°.

Table 7.1 Values of Constants Used to Evaluate M2

β′2

Constant 0° 15° 30° 45°

A 0.975 0.8922 0.7986 0.676

B 0.1669 0.1646 0.1545 0.1336
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M
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FIGURE 7.21

Variation of Impeller Exit Mach Number versus Blade Mach Number of a Centrifugal Compressor for Selected
Backsweep Angles (γ = 1.4, σ = 0.9, �2 = 0.375)
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Backswept vanes give a reduction of the impeller discharge Mach number, M2, at any given tip
speed. A designer making the change from radial vanes to backswept vanes will incur a reduction
in the design pressure ratio if the vane tip speed remains the same. To recover the original pressure
ratio the designer needs to increase the blade tip speed, which, in turn, increases the discharge
Mach number. Fortunately, it turns out that this increase in M2 is rather less than the reduction obtained
by the use of backsweep.

Illustrative Exercise
Consider a centrifugal compressor design that assumes the previous design data (Figures 7.20 and
7.21), together with β

0
2 ¼ 0° and a blade speed such that Mu ¼ 1.6. From Figure 7.20 the pressure

ratio at this point is 6.9 and, from Figure 7.21, the value of M2 ¼ 1.3. Choosing an impeller with a
backsweep angle, β20 ¼ 30°, the pressure ratio is 5.0 from Figure 7.20 at the same value of Mu. So,
to restore the original pressure ratio of 6.9 the blade Mach number must be increased to Mu ¼ 1.81.
At this new condition a value of M2 ¼ 1.178 is obtained from Figure 7.21, a significant reduction
from the original value. Greater values of backsweep may produce even further benefit!

The absolute flow angle can now be found from the exit velocity triangle, Figure 7.14:

tan α2 ¼ cθ2
cr2

¼ σðU2 � cr2tan β20 Þ
cr2

¼ σ
1
φ2

� tan β20
� �

.

Assuming again the values σ ¼ 0.9, φ2 ¼ 0.375, then with β
0
2 ¼ 0°, the value of α2 ¼ 67.38°. Similarly,

with β
0
2 ¼ 30°, the value of α2 ¼ 62°, i.e., both values of α2 are within the prescribed acceptible range.

Kinetic Energy Leaving the Impeller
According to van den Braembussche (1985), “the kinetic energy available at the diffuser inlet easily
amounts to more than 50% of the total energy added by the impeller.” Using the foregoing analysis
we can determine whether this statement is true or not. If the magnitude of the kinetic energy is so
large then the importance of efficiently converting this energy into pressure energy can be appreciated.
The conversion of the kinetic energy to pressure energy is considered in the following section on
diffusers.

We can define the fraction of the kinetic energy at impeller exit to the specific work input as:

fKE ¼ 1
2
c22=ΔW , ð7:47Þ

where

ΔW ¼ σU2
2 1��2tan β

0
2

� �
and

c2
U2

� �2

¼ c2
a2

� a2
a01

� a01
U2

� �2

¼ M2

Mu

� �2 a2
a01

� a02
a01

� �2

.
ð7:48Þ

Defining the total-to-total efficiency of the impeller as

η1 ¼
h02s � h01
h02 � h01

¼
h01

T02s
T01

� 1
� �
h02 � h01

¼
h01
�
pðγ�1Þ=γ
R � 1

�
ΔW

,
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where pR is the total-to-total pressure ratio across the impeller, then

a02
a01

� �2

¼ T02
T01

¼ 1þ ΔT0
T01

¼ 1þ ΔW
CpT01

¼ 1þ 1
η1

pðγ�1Þγ
R � 1

� �
, ð7:49Þ

a02
a2

� �2

¼ T02
T2

¼ 1þ 1
2

γ� 1ð ÞM2
2. ð7:50Þ

Substituting eqns. (7.48), (7.49), and (7.50) into eqn. (7.47) we get

fKE ¼ c22=U
2
2

2σð1��2 tan β
0
2Þ

¼
ðM2=MuÞ2 1þ 1

η1
pðγ�1Þ=γ
R � 1

� �h i
2σ 1��2tan β

0
2


 �
1þ 1

2 γ� 1ð ÞM2
2

	 
 . ð7:51Þ

Illustrative Exercise
Determine fKE assuming that β

0
2 ¼ 0, σ ¼ 0:9, ηI ¼ 0:8, pr ¼ 4, and γ ¼ 1:4:

Note: It is very convenient to assume that Figures 7.20 and 7.21 can be used to derive the values of
the Mach numbers Mu and M2. From Figure 7.20 we get Mu ¼ 1.3 and from Figure 7.21, M2 ¼ 1.117.
Substituting these results into eqn. (7.51), we get

fKE ¼ 1
2� 0.9

1.117
1.3

� �2 1þ 1
0.8 41=3.5 � 1

 �	 


1þ 1
5 � 1.1172

¼ 0.5276.

This calculation has thus verified the assertion of van den Braembussche (given previously) that the
kinetic energy available at diffuser inlet amounts to more than 50% of ΔW.

Calculations of fKE at other pressure ratios and sweepback angles show that its value remains about
0.52 provided that σ and η1 do not change.

Example 7.5
Air at a stagnation temperature of 22°C enters the impeller of a centrifugal compressor in the axial direction. The
rotor, which has 17 radial vanes, rotates at 15,000 rev/min. The stagnation pressure ratio between diffuser outlet
and impeller inlet is 4.2 and the overall efficiency (total-to-total) is 83%. Determine the impeller tip radius and
power required to drive the compressor when the mass flow rate is 2 kg/s and the mechanical efficiency is
97%. Given that the air density at impeller outlet is 2 kg/m3 and the axial width at entrance to the diffuser is
11 mm, determine the absolute Mach number at that point. Assume that the slip factor σ ¼ 1� 2/Z, where Z is
the number of vanes. (For air take γ ¼ 1.4 and R ¼ 0.287 kJ/(kg K).)

Solution
From eqn. (7.3) the specific work is

ΔW ¼ h02 � h01 ¼ U2cθ2,

as cθ1 ¼ 0. For a radial impeller, β
0
2 ¼ 0, so cθ2 ¼ σU2. With eqn. (7.37) and some rearranging:

U2
2 ¼ CpT01ðp03=p02ðγ�1Þ=γ � 1Þ

σηc
,
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where p03/p01 ¼ 4.2; Cp ¼ γR/(γ � 1) ¼ 1.005 kJ/kg K, σs ¼ 1 � 2/17 ¼ 0.8824. Therefore,

U2
2 ¼ 1005� 295ð4:20:286 � 1Þ

0:8824� 0:83
¼ 20:5� 104

and U2 ¼ 452 m/s.
The rotational speed is Ω ¼ 15,000 � 2π/60 ¼ 1570 rad/s and the impeller tip radius is rt ¼ U2/Ω ¼ 452/

1570 ¼ 0.288 m.
The actual shaft power is obtained from

_W_act ¼ _W_c=ηm ¼ _mΔW=ηm ¼ 2� 0:8824� 4522=0:97 ¼ 373 kW.

Although the absolute Mach number at the impeller tip can be obtained almost directly from eqn. (7.46a) it
may be instructive instead to find it from its basic definition:

M2 ¼ c2
a2

¼ c2

ðγRT2Þ1=2
,

where

c2 ¼ ðc2θ2 þ c2r2Þ1=2

cr2 ¼ _m=ðρ22πrtb2Þ ¼ 2=ð2� 2π� 0:288� 0:011Þ ¼ 50:3m=s

cθ2 ¼ σU2 ¼ 400 m=s.

Therefore,

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4002 þ 50:32

p
¼ 402:5 m=s.

Since

h02 ¼ h01 þ ΔW

h2 ¼ h01 þ ΔW � 1
2
c22.

Therefore,

T2 ¼ T01 þ ðΔW � 1
2
c22Þ=Cp ¼ 295þ ð18:1� 8:1Þ104=1005 ¼ 394:5K.

Hence,

M2 ¼ 402:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
402� 394:5

p ¼ 1:01:

7.11 THE DIFFUSER SYSTEM
Centrifugal compressors and pumps are, in general, fitted with either a vaneless or a vaned diffuser to
transform the kinetic energy at the impeller outlet into static pressure. The volute or scroll is the final
component of a centrifugal compressor or pump (Figure 7.22). This is a spiral-shaped channel of

7.11 The Diffuser System 251



increasing cross-sectional area whose purpose is to collect the flow from the diffuser (or impeller) and
deliver it to the exit pipe. The volute for compressors is almost always of the overhung type, usually the
choice is imposed by constraints of space. Figure 7.23 shows two types of volute cross-section.

Vaneless Diffusers
The simplest method of diffusion in a radial flow machine is one where the swirl velocity is reduced by
an increase in radius (conservation of angular momentum) and the radial component of velocity is

cr 2
c�2

c2

FIGURE 7.22

Volute of Centrifugal Compressor or Pump

Symmetric volute Overhung volute

FIGURE 7.23

Two Types of Volute
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controlled by the radial flow area. From continuity, since _m ¼ ρAcr ¼ 2πrbρcr, where b is the width of
passage, then the radial velocity cr at radius r is

cr ¼ r2b2ρ2cr2
rbρ

. ð7:52Þ

Assuming the flow is frictionless in the diffuser, the angular momentum is constant and cθ ¼ cθ2r2/r. Now
the tangential velocity component cθ is usually very much larger than the radial velocity component cr;
therefore, the ratio of inlet-to-outlet diffuser velocities c2/c3 is approximately r3/r2. Clearly, to obtain
useful reductions in velocity, vaneless diffusers must be large. This may not be a disadvantage in industrial
applications where weight and size may be of secondary importance compared with the cost of a vaned
diffuser. A factor in favour of vaneless diffusers is their wide operating range, vaned diffusers being
more sensitive to flow variation because of incidence effects.

For a parallel-walled radial diffuser in incompressible flow, the continuity equation requires that rcr
is constant. Assuming that rcθ remains constant, then the absolute flow angle α2 ¼ tan�1ðcθ/crÞ is also
constant as the fluid is diffused outwards. Under these conditions the flow follows a logarithmic spiral.
The relationship between the change in the circumferential angle Δθ and the radius ratio of the flow in
the diffuser can be found by considering an element of the flow geometry, shown in Figure 7.24. For
an increment in radius dr we have, rdθ ¼ dr tan α2. Integrating between stations 2 and 3, gives

Δθ ¼ θ3 � θ2 ¼ tan α2ln
r3
r2

� �
. ð7:53Þ

Values of Δθ are shown in Figure 7.25 plotted against r3/r2 for several values of α2. It can be readily
seen that when α2> 70°, rather long flow paths are implied, friction losses will be greater and the
diffuser efficiency will be lower.

Vaned Diffusers
With vaned diffusers the vanes are used to remove the swirl of the fluid at a higher rate than is possible
by a simple increase in radius, thereby reducing the length of flow path and diameter. The vaned
diffuser is clearly advantageous where small unit size is important.

There is a clearance between the impeller and vane leading edges amounting to about 0.04D2 for
pumps and between 0.1D2 to 0.2D2 for compressors. This space constitutes a vaneless diffuser and its
functions are (i) to reduce the circumferential pressure gradient at the impeller tip, (ii) to smooth out velo-
city variations between the impeller tip and vanes and, (iii) for compressors, to reduce the Mach number
at entry to the vanes. Flow calculations in this space follow the same procedure as for vaneless diffusers.

The flow follows an approximately logarithmic spiral path to the vanes after which it is constrained
by the diffuser channels. For rapid diffusion the axis of the channel is straight and tangential to the
spiral as shown. The passages are generally designed on the basis of simple channel theory with an
equivalent angle of divergence of between 8° and 10° to control separation.

In many applications of the centrifugal compressor, size is important and the outside diameter must
be minimised. With a vaned diffuser the channel length can be crucial when considering the final size
of the compressor. Clements and Artt (1988) considered this and performed a series of experiments
aimed at determining the optimum diffuser channel length to width ratio, L /W. They found that, on
the compressor they tested, increasing L /W beyond 3.7 did not produce any improvement in the
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performance, the pressure gradient at that point having reached zero. Another significant result found
by them was that the pressure gradient in the diffuser channel when L /W> 2.13 was no greater than
that which could be obtained in a vaneless diffuser. Hence, removing completely that portion of the
diffuser after this point would yield the same pressure recovery as with the full diffuser.

The number of diffuser vanes can also have a direct bearing on the efficiency and surge margin of
the compressor. Surge occurs at higher flow rates when vaned diffusers are used than when a simple
vaneless diffuser design is adopted. It is better to have fewer diffuser vanes than impeller vanes (about
half) in order to achieve a wide range of surge-free flow.

With several adjacent diffuser passages sharing the gas from one impeller passage, the uneven velocity
distribution from that passage results in alternate diffuser passages being either starved or choked. This is an
unstable situation leading to flow reversal in the passages and to surge of the compressor.When the number
of diffuser passages is less than the number of impeller passages a more uniform total flow results.

Diffuser Design Calculation
The performance of a conical diffuser has been chosen for this purpose using data presented by Sovran
and Klomp (1967). This is shown in Figure 7.26 as contour plots of Cp in terms of the geometry of the

rd�

dr

r

a2

FIGURE 7.24

Element of Flow in Radial Diffuser

254 CHAPTER 7 Centrifugal Pumps, Fans, and Compressors



diffuser, N/R1 and the area ratio AR (= A2/A1). Two optimum diffuser lines, useful for design purposes,
were added by the authors. The first is the line C	

p , the locus of points that defines the diffuser area
ratio AR, producing the maximum pressure recovery for a prescribed non-dimensional length, N/R1.
The second is the line C		

p , the locus of points defining the diffuser non-dimensional length, producing
the maximum pressure recovery at a prescribed area ratio. Note; Compressible flow data was not
available and incompressible data has been used.

Example 7.6
Using the performance chart given by Sovran and Klomp (Figure 7.26) determine the efficiency of a conical low
speed diffuser to give maximum pressure recovery with a prescribed non-dimensional length of 8.0 and evaluate
the included angle of the cone.

Solution
From Figure 7.26 at N/R ¼ 8.0 we find Cp ¼ 0.7 and Ag ¼ 2.8. The efficiency of the diffuser is

ηD ¼ Cp=Cp, id ,

where

Cp, id ¼ 1� ½1=A2
R� ¼ 0:872,

therefore,

ηD ¼ 0:802:

1.2 1.6 2.0

240

160

80

�2
5 808
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708

D
�
 (

de
g)

r3 /r2

FIGURE 7.25

Variation of Flow Path Parameters for Parallel-Walled Radial Diffuser (Incompressible Flow)
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From the geometric expression given for the diffuser shown in Figure 7.7(b) the included angle is

2θ ¼ 2 tan�1 R1

N
A

1
2
R � 1

� �� �
¼ 2 tan�1 1

8
ð
ffiffiffiffiffiffiffi
2:8

p
� 1Þ

� �
¼ 9:6°.

Note: This angle may be slightly on the high side and a small modification to the area ratio would seem
advisable.

7.12 CHOKING IN A COMPRESSOR STAGE
When the through-flow velocity in a passage reaches the speed of sound at some cross-section, the
flow chokes. For the stationary inlet passage this means that no further increase in mass flow is pos-
sible, either by decreasing the back pressure or by increasing the rotational speed. Now the choking
behaviour of rotating passages differs from that of stationary passages, making separate analyses for
the inlet, impeller, and diffuser a necessity. For each component a simple, one-dimensional approach
is used assuming that all flow processes are adiabatic and that the fluid is a perfect gas.
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FIGURE 7.26

Performance Chart for Conical Diffusers (Adapted from Sovran and Klomp, 1967)
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Inlet
Choking takes place when c2 ¼ a2 ¼ γRT. Since h0 ¼ hþ 1

2 c
2, CpT0 ¼ CpTþ 1

2 γRT, and

T

T0
¼ 1þ γR

2Cp

� ��1

¼ 2
γþ 1

. ð7:54Þ

Assuming the flow in the inlet is isentropic,

ρ
ρ0

¼ p

p0

T0
T

¼ 1þ 1
2

γ� 1ð ÞM2

� ��1=ðγ�1Þ

and when c ¼ a, M ¼ 1, so that

ρ
ρ0

¼ 2
γþ 1

� �1=ðγ�1Þ
. ð7:55Þ

Substituting eqns. (7.54) and (7.55) into the continuity equation, _m=A ¼ ρc ¼ ρðγRTÞ1=2,
_m

A
¼ ρ0a0

2
γþ 1

� �ðγþ1Þ=2ðγ�1Þ
. ð7:56Þ

Thus, since ρ0, a0 refer to inlet stagnation conditions that remain unchanged, the mass flow rate at
choking is constant.

Impeller
In the rotating impeller passages, flow conditions are referred to the factor I ¼ hþ 1

2 (w
2 � U2), which

is constant according to eqn. (7.2). At the impeller inlet and for the special case cθ1 ¼ 0, note that
I1 ¼ h1 þ 1

2 c
2
1 ¼ h01. When choking occurs in the impeller passages the relative velocity w equals

the speed of sound at some section. Now w2 ¼ a2 ¼ γRT and T01 ¼ Tþ (γRT/2Cp) � (U2/2Cp),
therefore,

T

T01
¼ 2

γþ 1

� �
1þ U2

2CpT01

� �
. ð7:57Þ

Assuming isentropic flow, ρ/ρ01 ¼ (T/T01)
1/(γ�1). Using the continuity equation,

_m

A
¼ ρ01a01

T

T01

� �ðγþ1Þ=2ðγ�1Þ
¼ ρ01a01

2
γþ 1

1þ U2

2CpT01

� �� �ðγþ1Þ=2ðγ�1Þ

¼ ρ01a01
2þ ðγ� 1ÞU2=a201

γþ 1

� �ðγþ1Þ=2ðγ�1Þ ð7:58Þ

If choking occurs in the rotating passages, eqn. (7.58) indicates that the mass flow is dependent on the
blade speed. As the speed of rotation is increased the compressor can accept a greater mass flow,
unless choking occurs in some other component of the compressor. The fact that the choking flow
in an impeller can vary, depending on blade speed, may seem at first rather surprising; this analysis
gives the reason for the variation of the choking limit of a compressor.
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Diffuser
The relation for the choking flow, eqn. (7.56) holds for the diffuser passages, it being noted that stagna-
tion conditions now refer to the diffuser and not the inlet. Thus,

_m

A2
¼ ρ02a02

2
γþ 1

� �ðγþ1Þ=2ðγ�1Þ
. ð7:59Þ

Clearly, stagnation conditions at the diffuser inlet are dependent on the impeller process. To find
how the choking mass flow limit is affected by blade speed it is necessary to refer back to inlet stagna-
tion conditions.

Assuming a radial bladed impeller of efficiency ηi then,

T02s � T01 ¼ ηiðT02 � T01Þ ¼ ηiσU
2
2=Cp.

Hence,

p02=p01 ¼ ðT02s=T01Þγ=ðγ�1Þ ¼ ½1þ ηiσU
2
2=CpT01Þ�γ=ðγ�1Þ,

therefore,

_m

A2
¼ ρ01a01

½1þ ðγ� 1ÞηiσU2
2=a

2
01�γ=ðγ�1Þ

½1þ ðγ� 1ÞσU2
2=a01�1=2

2
γþ 1

� �ðγþ1Þ=2ðγ�1Þ
. ð7:60Þ

In this analysis it should be noted that the diffuser process has been assumed to be isentropic but the
impeller process has been assumed anisentropic. Equation (7.60) indicates that the choking mass flow
can be varied by changing the impeller speed of rotation.

Note: The preliminary design of centrifugal compressor for a turbocharger is given in Appendix B.
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PROBLEMS
Note: In problems 2 to 6 assume γ and R are 1.4 and 287 J/(kg°C), respectively. In problems 1 to 4
assume the stagnation pressure and stagnation temperature at compressor entry are 101.3 kPa and
288 K, respectively.

1. A cheap radial-vaned centrifugal fan is required to provide a supply of pressurised air to a furnace.
The specification requires that the fan produce a total pressure rise equivalent to 7.5 cm of water at a
volume flow rate of 0.2 m3/s. The fan impeller is fabricated from 30 thin sheet metal vanes, the ratio
of the passage width to circumferential pitch at the impeller exit being specified as 0.5, and the ratio
of the radial velocity to blade tip speed as 0.1. Assuming that the overall isentropic efficiency of the
fan is 0.75 and that the slip can be estimated from Stanitz’s expression, eqn. (7.34b), determine

(i) the vane tip speed;
(ii) the rotational speed and diameter of the impeller;
(iii) the power required to drive the fan if the mechanical efficiency is 0.95;
(iv) the specific speed.

For air assume the pressure is 105 Pa and the temperature is 20°C.

2. The air entering the impeller of a centrifugal compressor has an absolute axial velocity of 100 m/s.
At rotor exit the relative air angle measured from the radial direction is 26°360, the radial compo-
nent of velocity is 120 m/s, and the tip speed of the radial vanes is 500 m/s. Determine the power
required to drive the compressor when the air flow rate is 2.5 kg/s and the mechanical efficiency is
95%. If the radius ratio of the impeller eye is 0.3, calculate a suitable inlet diameter assuming the
inlet flow is incompressible. Determine the overall total pressure ratio of the compressor when the
total-to-total efficiency is 80%, assuming the velocity at exit from the diffuser is negligible.

3. A centrifugal compressor has an impeller tip speed of 366 m/s. Determine the absolute Mach num-
ber of the flow leaving the radial vanes of the impeller when the radial component of velocity at
impeller exit is 30.5m/s and the slip factor is 0.90. Given that the flow area at impeller exit is 0.1 m2

and the total-to-total efficiency of the impeller is 90%, determine the mass flow rate.
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4. The eye of a centrifugal compressor has a hub–tip radius ratio of 0.4, a maximum relative flow
Mach number of 0.9, and an absolute flow that is uniform and completely axial. Determine the
optimum speed of rotation for the condition of maximum mass flow given that the mass flow rate
is 4.536 kg/s. Also, determine the outside diameter of the eye and the ratio of axial velocity–
blade speed at the eye tip. Figure 7.11 may be used to assist the calculations.

5. An experimental centrifugal compressor is fitted with free-vortex guide vanes to reduce the rela-
tive air speed at inlet to the impeller. At the outer radius of the eye, air leaving the guide vanes
has a velocity of 91.5 m/s at 20° to the axial direction. Determine the inlet relative Mach number,
assuming frictionless flow through the guide vanes, and the impeller total-to-total efficiency.
Other details of the compressor and its operating conditions are

Impeller entry tip diameter, 0.457 m;
Impeller exit tip diameter, 0.762 m;
Slip factor, 0.9 Radial blades at impeller exit;
Radial component of velocity at impeller exit, 53.4 m/s;
Rotational speed of impeller, 11,000 rev/min;
Static pressure at impeller exit, 223 kPa (abs).

6. A centrifugal compressor has an impeller with 21 vanes, which are radial at exit, a vaneless dif-
fuser, and no inlet guide vanes. At inlet the stagnation pressure is 100 kPa (abs) and the stagna-
tion temperature is 300 K.

(i) Given that the mass flow rate is 2.3 kg/s, the impeller tip speed is 500 m/s and the mechanical
efficiency is 96%, determine the driving power on the shaft. Use eqn. (7.34b) for the slip factor.

(ii) Determine the total and static pressures at diffuser exit when the velocity at that position is
100 m/s. The total-to-total efficiency is 82%.

(iii) The reaction, which may be defined as for an axial flow compressor by eqn. (5.19), is 0.5,
the absolute flow speed at impeller entry is 150 m/s, and the diffuser efficiency is 84%.
Determine the total and static pressures, absolute Mach number, and radial component
of velocity at the impeller exit.

(iv) Determine the total-to-total efficiency for the impeller.
(v) Estimate the inlet–outlet radius ratio for the diffuser assuming the conservation of angular

momentum.
(vi) Find a suitable rotational speed for the impeller given an impeller tip width of 6 mm.

7. A centrifugal pump is used to raise water against a static head of 18.0 m. The suction and
delivery pipes, both 0.15 m diameter, have, respectively, friction head losses amounting to 2.25
and 7.5 times the dynamic head. The impeller, which rotates at 1450 rev/min, is 0.25 m diameter
with eight vanes, radius ratio 0.45, inclined backwards at β

0
2 ¼ 60°. The axial width of the impeller

is designed so as to give constant radial velocity at all radii and is 20mm at impeller exit. Assuming
a hydraulic efficiency of 0.82 and an overall efficiency of 0.72, determine

(i) the volume flow rate;
(ii) the slip factor using Busemann’s method;
(iii) the impeller vane inlet angle required for zero incidence angle;
(iv) the power required to drive the pump.
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8. A centrifugal pump delivers 50 dm3/s of water at an impeller speed of 1450 rev/min. The impel-
ler has eight vanes inclined backwards to the direction of rotation with an angle at the tip of
β

0
2 ¼ 60°. The diameter of the impeller is twice the diameter of the shroud at inlet and the mag-

nitude of the radial component of velocity at impeller exit is equal to that of the axial component
of velocity at the inlet. The impeller entry is designed for the optimum flow condition to resist
cavitation [see eqn. (7.20)], has a radius ratio of 0.35 and the blade shape corresponds to a well-
tested design giving a cavitation coefficient σb ¼ 0.3. Assuming that the hydraulic efficiency is
70% and the mechanical efficiency is 90%, determine

(i) the diameter of the inlet;
(ii) the net positive suction head;
(iii) the impeller slip factor using Wiesner’s formula;
(iv) the head developed by the pump;
(v) the power input.

Also calculate values for slip factor using the equations of Stodola and Busemann, comparing
the answers obtained with the result found from Wiesner’s equation.

9. (a) Write down the advantages and disadvantages of using free-vortex guide vanes upstream of
the impeller of a high pressure ratio centrifugal compressor. What other sorts of guide vanes
can be used and how do they compare with free-vortex vanes?

(b) The inlet of a centrifugal air compressor has a shroud diameter of 0.2 m and a hub diameter
of 0.105 m. Free-vortex guide vanes are fitted in the duct upstream of the impeller so that the
flow on the shroud at the impeller inlet has a relative Mach number, M1,rel¼ 1.0, an absolute
flow angle of α1¼ 20°, and a relative flow angle β1¼ 55°. At inlet the stagnation conditions
are 288 K and 105 Pa. Assuming frictionless flow into the inlet, determine

(i) the rotational speed of the impeller;
(ii) the air mass flow.

(c) At exit from the radially vaned impeller, the vanes have a radius of 0.16 m and a design point
slip factor of 0.9. Assuming an impeller efficiency of 0.9, determine

(i) the shaft power input;
(ii) the impeller pressure ratio.

10. Sketch a Mollier diagram showing all the stagnation and static points needed to represent the
complete flow process in a diffuser. Derive the following expression for the diffuser efficiency:

ηD ¼ T2s=T1 � 1
T2=T1 � 1

.

Air enters a diffuser with an averaged velocity of 360 m/s at a stagnation pressure and tem-
perature of 340 kPA and 420 K and leaves at a stagnation pressure of 300 kPa with an averaged
velocity of 120 m/s and a static pressure of 285 kPa. Determine,

(i) the static pressure and Mach number of the air at inlet;
(ii) the diffuser efficiency;
(iii) the Mach number at exit and the overall entropy increase.
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Take γ ¼ 1.4 and Cp ¼ 287 J/(kg K).

11. At the inlet to an axial diffuser the velocity of the approaching air is 420 m/s, the stagnation pres-
sure is 300 kPa, and the stagnation temperature is 600 K. At exit the stagnation pressure is
285 kPa and the static pressure 270 kPa. Using compressible flow analysis, determine

(i) the static temperature, static pressure, and Mach number at inlet and the diffuser efficiency;
(ii) the Mach numbers at exit and entry.

For air take γ ¼ 1.376 and R ¼ 287 J/(kg K).

12. A centrifugal compressor fitted with 21 radial vanes with an outside diameter of 400 cm is
designed to operate at a rotational speed of 17,400 rpm. Assuming that the air admitted is at
101.3 kPa and a temperature of 15°C, determine,

(i) the absolute Mach number of the flow at the impeller tip given that the radial velocity at
that location is 30 m/s;

(ii) the stagnation pressure of the air leaving the impeller if the total-to-total efficiency of the
impeller is 92%;

(iii) the mass flow of air passing through the compressor if the axial width of the passage at
impeller exit is 2.0 cm.

Assume the Stanitz expression for the slip factor. Take Cp ¼ 1005 J/(kg K) and γ ¼ 1.4.

13. (a) A model low speed centrifugal compressor (a “blower”) runs at 430 rpm and delivers 10 m3/s
of air against a pressure head of 60 mm of water. If the pump efficiency is estimated to be 80%,
how much power is required to drive the compressor?

(b) A geometrically similar compressor is made with a diameter 1.8 times the size of the model
and is required to work against a pressure head of 80 mm of water. Determine the operating
speed and the power needed to drive the compressor assuming dynamically similar condi-
tions apply.

14. A centrifugal pump is required to deliver 0.09 m3/s of water against a back pressure of 100 kPa.
The impeller, which rotates at 1250 rpm, is 0.35 m diameter and has nine vanes swept back at 45°.
The axial width of the impeller at its tip is 40 mm. Using Wiesner’s slip correlation [assuming that
r1/r2 ¼ ε in eqn. (7.35d)] determine the specific work done by the impeller. If the efficiency of the
pump is 70%, calculate the power needed to drive the pump. Calculate the specific speed and spe-
cific diameter of the pump and compare your results with the data given in Chapter 2.

15. Atmospheric air enters the intake diffuser of a jet aircraft flying at a Mach number of 0.9 at a
constant altitude where the static pressure and temperature are 25 kPa and 220 K, respectively.
The entrance area of the intake is 0.5 m2 and the area at entry to the compressor is 0.8 m2. There
is a loss of 10% of the stagnation pressure of the air as it flows to the compressor. Using com-
pressible flow theory and assuming adiabatic flow in the intake, determine the Mach number and
velocity of the flow entering the compressor.

16. A prototype centrifugal compressor is to be built with an impeller having 19 vanes backswept at
β

0
2 ¼ 30°, rotating at 12,000 rpm and delivering air at an outlet pressure of 385 kPa. The total-to-

total efficiency of the compressor, based upon previous well-established design data, is estimated
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as 0.82. It can be assumed that the radial component of the air leaving the impeller equals
0.2 times the impeller tip speed. The air enters the inlet axially at a stagnation temperature
and pressure of 288 K and 100 kPa. Determine

(i) the impeller tip speed and tip diameter using the Wiesner slip factor;
(ii) the specific speed of the compressor assuming that the axial velocity at entry is equal to the

radial component of velocity at impeller outlet. Comment upon whether the chosen value
of the efficiency is appropriate.

How well does the specific speed you have found compare with the values shown in Chapter 2?

17. For the preceding problem determine the size of the compressor eye given that the air flow is
8 kg/s the radius ratio rh1/rs1 ¼ 0.4. What is the value of the absolute Mach number M1?

18. A radial-vaned centrifugal compressor is designed for a rotational speed of 2400 rpm and
requires 1 MW of power to compress the incoming air at a flow rate of 8 kg/s. The air enters
the intake axially and the stagnation conditions are 103 kPa and 288 K. Assuming the slip factor
is 0.9 and the specific speed

NS ¼ �0:5=ψ0:75 ¼ 0:7,

where � ¼ cx1=U2 and ψ ¼ ΔW=U2
2 , determine

(i) the vane tip speed;
(ii) the axial velocity at inlet, cx1;
(iii) the inlet Mach number, M1;
(vi) the inlet area.
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CHAPTER

Radial Flow Gas Turbines 8
I like work; it fascinates me, I can sit and look at it for hours.

Jerome K. Jerome, Three Men in a Boat

8.1 INTRODUCTION
The radial flow turbine has had a long history of development being first conceived for the purpose of
producing hydraulic power over 180 years ago. A French engineer, Fourneyron, developed the first
commercially successful hydraulic turbine (circa 1830) and this was of the radial-outflow type.
A radial-inflow type of hydraulic turbine was built by Francis and Boyden in the United States
(circa 1847), which gave excellent results and was highly regarded. This type of machine is now
known as the Francis turbine, a simplified arrangement of it being shown in Figure 1.1. It will be
observed that the flow path followed is from the radial direction to what is substantially an axial direc-
tion. A flow path in the reverse direction (radial outflow), for a single-stage turbine anyway, creates
several problems, one of which (discussed later) is low specific work. However, as pointed out by
Shepherd (1956) radial-outflow steam turbines comprising many stages have received considerable
acceptance in Europe. Figure 8.1 from Kearton (1951) shows diagrammatically the Ljungström
steam turbine, which, because of the tremendous increase in the specific volume of steam, makes
the radial-outflow flow path virtually imperative. A unique feature of the Ljungström turbine is that
it does not have any stationary blade rows. The two rows of blades constituting each of the stages rotate
in opposite directions so that they can both be regarded as rotors.

The inward-flow radial (IFR) turbine covers tremendous ranges of power, rates of mass flow, and
rotational speeds, from very large Francis turbines used in hydroelectric power generation and devel-
oping hundreds of megawatts (see Figures 9.12 and 9.13) down to tiny closed cycle gas turbines for
space power generation of a few kilowatts.

The IFR gas turbine has been, and continues to be, used extensively for powering automotive tur-
bocharges, aircraft auxiliary power units, expansion units in gas liquefaction, and other cryogenic sys-
tems and as a component of the small (10 kW) gas turbines used for space power generation
(Anon., 1971). It has been considered for primary power use in automobiles and in helicopters.
According to Huntsman, Hudson, and Hill (1992), studies at Rolls-Royce have shown that a cooled,
high efficiency IFR turbine could offer significant improvement in performance as the gas generator
turbine of a high technology turboshaft engine. What is needed to enable this type of application
are some small improvements in current technology levels. However, designers of this new generation
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of IFR turbines face considerable problems, particularly in the development of advanced techniques of
rotor cooling or of ceramic, shock-resistant rotors.

As indicated later in this chapter, over a limited range of specific speed, IFR turbines provide an
efficiency about equal to that of the best axial-flow turbines. The significant advantages offered by
the IFR turbine compared with the axial-flow turbine is the greater amount of work that can be
obtained per stage, the ease of manufacture, and its superior ruggedness.

8.2 TYPES OF INWARD-FLOW RADIAL TURBINE
In the centripetal turbine energy is transferred from the fluid to the rotor in passing from a large radius
to a small radius. For the production of positive work the product of Ucθ at entry to the rotor must be
greater than Ucθ at rotor exit [eqn. (1.18c)]. This is usually arranged by imparting a large component of
tangential velocity at rotor entry, using single or multiple nozzles, and allowing little or no swirl in the
exit absolute flow.

Cantilever Turbine
Figure 8.2(a) shows a cantilever IFR turbine where the blades are limited to the region of the rotor tip,
extending from the rotor in the axial direction. In practice the cantilever blades are usually of the
impulse type (i.e., low reaction), by which it is implied that there is little change in relative velocity

Exhaust to
condenser

Incoming
steam Concentric

labyrinth rings (to
reduce leakage)

(a) Meridional section
through turbine

(b) Blading arrangement
         and directions of rotation

FIGURE 8.1

Ljungström Type Outward Flow Radial Turbine (Adapted from Kearton, 1951)
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at inlet and outlet of the rotor. There is no fundamental reason why the blading should not be of the
reaction type. However, the resulting expansion through the rotor would require an increase in flow
area. This extra flow area is extremely difficult to accommodate in a small radial distance, especially
as the radius decreases through the rotor row.

Aerodynamically, the cantilever turbine is similar to an axial-impulse turbine and can even be
designed by similar methods. Figure 8.2(b) shows the velocity triangles at rotor inlet and outlet.
The fact that the flow is radially inwards hardly alters the design procedure because the blade radius
ratio r2/r3 is close to unity anyway.

The 90° IFR Turbine
Because of its higher structural strength compared with the cantilever turbine, the 90° IFR turbine is the
preferred type. Figure 8.3 shows a typical layout of a 90° IFR turbine; the inlet blade angle is generally
made zero, a fact dictated by the material strength and often high gas temperature. The rotor vanes are
subject to high stress levels caused by the centrifugal force field, together with a pulsating and often
unsteady gas flow at high temperatures. Despite possible performance gains the use of non-radial (or
swept) vanes is generally avoided, mainly because of the additional stresses that arise due to bending.
Nevertheless, despite this difficulty, Meitner and Glassman (1983) have considered designs using
sweptback vanes in assessing ways of increasing the work output of IFR turbines.

From station 2 the rotor vanes extend radially inward and turn the flow into the axial direction. The
exit part of the vanes, called the exducer, is curved to remove most if not all of the absolute tangential
component of velocity. The 90° IFR turbine or centripetal turbine is very similar in appearance to the
centrifugal compressor of Chapter 7, but with the flow direction and blade motion reversed.

(a)

(b)

c2

cm3

U3

U2

w2

w3

1
Nozzle blades

Rotor blades

Axis of rotor
Flow

2

3

FIGURE 8.2

Arrangement of Cantilever Turbine and Velocity Triangles at the Design Point
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The fluid discharging from the turbine rotor may have a considerable velocity c3 and an axial dif-
fuser (see Chapter 7) would normally be incorporated to recover most of the kinetic energy, 12 c

2
3, which

would otherwise be wasted. In hydraulic turbines (discussed in Chapter 9) a diffuser is invariably used
and is called the draught tube.

In Figure 8.3 the velocity triangles are drawn to suggest that the inlet relative velocity, w2, is
radially inward, i.e., zero incidence flow, and the absolute flow at rotor exit, c3, is axial. This config-
uration of the velocity triangles, popular with designers for many years, is called the nominal design
condition and will be considered in some detail in the following pages. Following this the so-called
optimum efficiency design will be explained.

8.3 THERMODYNAMICS OF THE 90° IFR TURBINE
The complete adiabatic expansion process for a turbine comprising a nozzle blade row, a radial rotor
followed by a diffuser, corresponding to the layout of Figure 8.3, is represented by the Mollier diagram
shown in Figure 8.4. In the turbine, frictional processes cause the entropy to increase in all components
and these irreversibilities are implied in Figure 8.4.

Across the nozzle blades the stagnation enthalpy is assumed constant, h01 ¼ h02 and, therefore, the
static enthalpy drop is

h1 � h2 ¼ 1
2
ðc22 � c21Þ, ð8:1Þ

Nozzle blades

Scroll

1

2

3

At rotor inlet c2
cm25 cr 25 w2

c35cm35cx3

�2

�3U2

U3

w3

At rotor outlet

4

Rotor
Shroud

Diffuser V

FIGURE 8.3

Layout and Velocity Diagrams for a 90° Inward-Flow Radial Turbine at the Nominal Design Point
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corresponding to the static pressure change from p1 to the lower pressure p2. The ideal enthalpy change
(h1 � h2s) is between these same two pressures but at constant entropy.

In Chapter 7 it was shown that the rothalpy, I ¼ h0,rel – 1
2U

2, is constant for an adiabatic irreversible
flow process, relative to a rotating component. For the rotor of the 90° IFR turbine,

h02,rel � 1
2
U2

2 ¼ h03,rel � 1
2
U2

3 .

Thus, as h0,rel – 1
2w

2,

h2�h3 ¼ 1
2
½ðU2

2 �U2
3Þ�ðw2

2 �w2
3Þ�. ð8:2aÞ

In this analysis the reference point 2 (Figure 8.3) is taken to be at the inlet radius r2 of the rotor (the
blade tip speed U2 ¼ Ωr2). This implies that the nozzle irreversibilities are lumped together with any
friction losses occurring in the annular space between nozzle exit and rotor entry (usually scroll losses
are included as well).

Across the diffuser the stagnation enthalpy does not change, h03 ¼ h04, but the static enthalpy
increases as a result of the velocity diffusion. Hence,

h4 � h3 ¼ 1
2

�
c23 � c24

�
. ð8:3Þ

The specific work done by the fluid on the rotor is

ΔW ¼ h01 � h03 ¼ U2cθ2 �U3cθ3. ð8:4aÞ
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FIGURE 8.4

Mollier Diagram for a 90° Inward-Flow Radial Turbine and Diffuser (At the Design Point)
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As h01 ¼ h02,

ΔW ¼ h02 � h03 ¼ h2 � h3 þ 1
2
ðc22 � c23Þ ¼

1
2
½ðU2

2 �U2
3Þ� ðw2

2 �w2
3Þ þ ðc22 � c23Þ� ð8:4bÞ

after substituting eqn. (8.2a).

8.4 BASIC DESIGN OF THE ROTOR
Each term in eqn. (8.4b) makes a contribution to the specific work done on the rotor. A significant
contribution comes from the first term, namely, 1

2ðU2
2 �U2

1Þ, and is the main reason why the
inward-flow turbine has such an advantage over the outward-flow turbine where the contribution
from this term would be negative. For the axial-flow turbine, where U2 ¼ U1, of course, no contribu-
tion to the specific work is obtained from this term. For the second term in eqn. (8.4b) a positive con-
tribution to the specific work is obtained when w3 > w2. In fact, accelerating the relative velocity
through the rotor is a most useful aim of the designer as this is conducive to achieving a low loss
flow. The third term in eqn. (8.4b) indicates that the absolute velocity at rotor inlet should be larger
than at rotor outlet so as to increase the work input to the rotor. With these considerations in mind
the general shape of the velocity diagram shown in Figure 8.3 results.

Nominal Design
The nominal design is defined by a relative flow of zero incidence at rotor inlet (i.e., w2 ¼ cr2) and an
absolute flow at rotor exit, which is axial (i.e., c3 ¼ cx3).

1 Thus, from eqn. (8.4a), with cθ3 ¼ 0 and
cθ2 ¼ U2, the specific work for the nominal design is simply

ΔW ¼ U2
2 . ð8:4cÞ

Example 8.1
The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter and
rotates at 38,140 rev/min. At the design point the absolute flow angle at rotor entry is 72°. The rotor mean exit
diameter is one half of the rotor diameter and the relative velocity at rotor exit is twice the relative velocity at
rotor inlet.

Determine the relative contributions to the specific work of each of the three terms in eqn. (8.4b).

Solution
The blade tip speed is U2 ¼ πND2/60 ¼ π� 38,140� 0.2376/60 ¼ 474.5 m/s.

Referring to Figure 8.3, w2 ¼ U2cot α2 ¼ 154.17 m/s, and c2 ¼ U2/sin α2 ¼ 498.9 m/s.

c23 ¼ w2
3 �U2

3 ¼ ð2�154:17Þ2� 1
2
�474:5

� �2
¼ 38, 786m2=s2.

1This arrangement (cθ3 ¼ 0) minimizes the exit kinetic energy loss. However, some designers may opt for some exit swirl
in the flow in order to benefit a subsequent diffusion process.
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Hence,

ðU2
2 �U2

2Þ ¼ U2
2ð1� 1=4Þ ¼ 168, 863m2=s2,

w2
3 �w2

2 ¼ 3�w2
2 ¼ 71, 305m2=s2

and

c22 � c23 ¼ 210, 115m2=s2.

Thus, summing the values of the three terms and dividing by 2, we get ΔW ¼ 225,142m2/s2.
The fractional inputs from each of the three terms are, for the U2 terms, 0.375; for the w2 terms,

0.158; for the c2 terms, 0.467.
Finally, as a numerical check, the specific work is, ΔW ¼ U2

2 ¼ 474:52 ¼ 225, 150m2=s2, which,
apart from some rounding errors, agrees with the preceding computations.

Spouting Velocity
The term spouting velocity c0 (originating from hydraulic turbine practice) is defined as that velocity
that has an associated kinetic energy equal to the isentropic enthalpy drop from turbine inlet
stagnation pressure p01 to the final exhaust pressure. The exhaust pressure here can have several
interpretations depending upon whether total or static conditions are used in the related efficiency
definition and upon whether or not a diffuser is included with the turbine. Thus, when no diffuser
is used

1
2
c20 ¼ h01 � h03ss ð8:5aÞ

or

1
2
c20 ¼ h01 � h3ss ð8:5bÞ

for the total and static cases, respectively.
In an ideal (frictionless) radial turbine with complete recovery of the exhaust kinetic energy and

with cθ2 ¼ U2,

ΔW ¼ U2
2 ¼ 1

2
c20

therefore,

U2

c0
¼ 0:707:

At the best efficiency point of actual (frictional) 90° IFR turbines it is found that this velocity ratio is,
generally, in the range 0.68 < U2/c0 < 0.71.

8.4 Basic Design of the Rotor 271



8.5 NOMINAL DESIGN POINT EFFICIENCY
Referring to Figure 8.4, the total-to-static efficiency in the absence of a diffuser is defined as

ηts ¼
h01� h03
h01 � h3ss

¼ ΔW

ΔW þ 1
2 c

2
3 þ ðh3 � h3sÞ þ ðh3s � h3ssÞ

. ð8:6Þ

The passage enthalpy losses can be expressed as a fraction (ζ ) of the exit kinetic energy relative to the
nozzle row and the rotor, i.e.,

h3 � h3s ¼ 1
2
w2
3ζ R, ð8:7aÞ

h3s � h3ss ¼ 1
2
c22ζ NðT3=T2Þ ð8:7bÞ

for the rotor and nozzles, respectively. It is noted that, for a constant pressure process, ds ¼ dh/T,
hence, the approximation,

h3s � h3ss ¼ ðh2 � h2sÞðT3=T2Þ.
Substituting for the enthalpy losses in eqn. (8.6),

ηts ¼ 1þ 1
2
ðc23 þ w3

3ζ R þ c22ζNT3=T2Þ=ΔW
� ��1

. ð8:8Þ

From the design point velocity triangles, Figure 8.3,

c2 ¼ U2 cosec a2, w3 ¼ U3 cosec β3, c3 ¼ U3 cot β3, ΔW ¼ U2
2 .

Thus, substituting all these expressions in eqn. (8.8) and noting that U3 ¼ U2r3/r2,

ηts ¼ 1þ 1
2

ζN
T3
T2

cosec2α2 þ r3
r2

� �2
ðζ R cosec2β3 þ cot 2β3Þ

" #( )�1

, ð8:9aÞ

where r3 and β3 are taken to apply at the arithmetic mean radius, i.e., r3 ¼ 1
2(r3sþ r3h). Note that r3s is

the shroud radius at rotor exit and r3h is the hub radius at rotor exit. The temperature ratio (T3/T2) in
eqn. (8.9a) can be obtained as follows.

At the nominal design condition, referring to the velocity triangles of Figure 8.3, w2
3 �U2

3 ¼ c23, and
so eqn. (8.2a) can be rewritten as

h2 � h3 ¼ 1
2
ðU2

2 �w2
2 þ c23Þ. ð8:2bÞ

This particular relationship, in the form I ¼ h02,rel � 1
2U

2
2 ¼ h03, can be easily identified in Figure 8.4.

Again, referring to the velocity triangles, w2 ¼ U2cot α2 and c3 ¼ U3cot β3, a useful alternative
form to eqn. (8.2b) is obtained:

h2 � h3 ¼ 1
2
U2

2

	ð1� cot 2a2
�þ ðr3=r2Þcot 2β3



, ð8:2cÞ
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where U3 is written as U2r3/r2. For a perfect gas the temperature ratio T3/T2 can be easily found.
Substituting h ¼ CpT ¼ γRT/(γ � 1) in eqn. (8.2c),

1� T3
T2

¼ 1
2
U2

2
ðγ � 1Þ
γRT2

1� cot 2α2 þ r3
r2

� �2
cot 2β3

" #
,

therefore,

T3
T2

¼ 1� 1
2

γ� 1ð Þ U2

a2

� �2

1� cot 2α2 þ r3
r2

� �2
cot 2β3

" #
, ð8:2dÞ

where a2 ¼ (γRT2)
1/2 is the sonic velocity at temperature T2.

Generally this temperature ratio will have only a very minor effect upon the numerical value of ηts
and so it is often ignored in calculations. Thus,

ηts ’ 1þ 1
2

ζ N cosec2α2 þ r3
r2

� �2�
ζ R cosec

2β3 þ cos 2β3

�" #( )�1

ð8:9bÞ

is the expression normally used to determine the total-to-static efficiency. An alternative form for ηts
can be obtained by rewriting eqn. (8.6) as

ηts ¼
h01 � h03
h01 � h3ss

¼ ðh01 � h3ssÞ� ðh03 � h3Þ� ðh3 � h3sÞ� ðh3s � h3ssÞ
ðh01 � h3ssÞ ¼ 1�ðc23 þ ζNc

2
2 þ ζ Rw

2
3Þ=c20,

ð8:10Þ
where the spouting velocity c0 is defined by

h01 � h3ss ¼ 1
2
c20 ¼ CpT01

h
1�ðp3=p01Þðγ�1Þ=γ

i
. ð8:11Þ

A simple connection exists between total-to-total and total-to-static efficiency, which can be
obtained as follows. Writing

ΔW ¼ ηtsΔWis ¼ ηtsðh01 � h3ssÞ
then

ηtt ¼
ΔW

ΔWis � 1
2
c23

¼ 1

1
ηts

� c23
2ΔW

.

Therefore,

1
ηtt

¼ 1
ηts

� c23
2ΔW

¼ 1
ηts

� 1
2

r3
r2
cot β3

� �2
. ð8:12Þ

8.5 Nominal Design Point Efficiency 273



Example 8.2
Performance data from the CAV type 01 radial turbine (Benson, Cartwright, and Das 1968) operating at a pressure
ratio p01/p3 of 1.5 with zero incidence relative flow onto the rotor is presented in the following form:

_m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01=p01

p
¼ 1.44� 10�5, msðKÞ1=2,

N=
ffiffiffiffiffiffiffi
T01

p ¼ 2410, ðrev=minÞ=K1=2,

τ=p01 ¼ 4:59� 10�6, m3,

where τ is the torque, corrected for bearing friction loss. The principal dimensions and angles, etc. are given as follows:

Rotor inlet diameter, 72.5 mm;
Rotor inlet width, 7.14 mm;
Rotor mean outlet diameter, 34.4 mm;
Rotor outlet annulus height, 20.1 mm;
Rotor inlet angle, 0°;
Rotor outlet angle, 53°;
Number of rotor blades, 10;
Nozzle outlet diameter, 74.1 mm;
Nozzle outlet angle, 80°;
Nozzle blade number, 15.

The turbine is “cold tested” with air heated to 400 K (to prevent condensation erosion of the blades). At nozzle
outlet an estimate of the flow angle is given as 70° and the corresponding enthalpy loss coefficient is stated to be
0.065. Assuming that the absolute flow at rotor exit is without swirl and uniform and the relative flow leaves the
rotor without any deviation, determine the total-to-static and overall efficiencies of the turbine, the rotor enthalpy
loss coefficient and the rotor relative velocity ratio.

Solution
The data given are obtained from an actual turbine test and, even though the bearing friction loss has been
corrected, there is an additional reduction in the specific work delivered due to disk friction and tip leakage losses,
etc. The rotor speed N ¼ 2410

ffiffiffiffiffiffiffiffi
400

p ¼ 48, 200 rev=min, the rotor tip speed U2 ¼ πND2/60 ¼ 183 m/s and, hence,
the specific work done by the rotor ΔW ¼ U2

2 ¼ 33:48 kJ=kg. The corresponding isentropic total-to-static enthalpy
drop is

h01 � h3ss ¼ CpT01
h
1�ðp3=p01Þðγ� 1Þ=γ

i
¼ 1.005� 400

h
1�ð1=1.5Þ1=3.5

i
¼ 43.97 kJ=kg.

Thus, the total-to-static efficiency is

ηts ¼ ΔW=ðh01 � h3ssÞ ¼ 76:14%.

The actual specific work output to the shaft, after allowing for the bearing friction loss, is

ΔWact ¼ τΩ= _m¼ τ
p01

� �
Nffiffiffiffiffiffiffi
T01

p p01
_m
ffiffiffiffiffiffiffi
T01

p
� �

π
30

T01

¼ 4.59� 10�6 � 2410� π� 400=ð30� 1.44� 10�5Þ
¼ 32.18 kJ=kg.
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Thus, the turbine overall total-to-static efficiency is

η0 ¼ ΔWact=ðh01� h3ssÞ ¼ 73.18%.

By rearranging eqn. (8.9b) the rotor enthalpy loss coefficient can be obtained:

ζ R ¼ 	2ð1=ηts � 1Þ� ζN cosec2α2

ðr2=r3Þ2 sin 2 β3 � cos2 β3

¼ 	2ð1=0.7613� 1Þ� 0.065� 1.1186

� 4.442� 0.6378� 0.3622

¼ 1.208.

At rotor exit the absolute velocity is uniform and axial. From the velocity triangles, Figure 8.3,

w2
3 rð Þ ¼ U2

3 þ c23 ¼ U2
3

r

r3

� �2

þ cot 2β3

" #
,

w2 ¼ U2 cot α2,

ignoring blade-to-blade velocity variations. Hence,

w3ðrÞ
w2

¼ r3
r2
tan α2

r

r3

� �2

þ cot 2β3

" #1=2
. ð8:13Þ

The lowest value of this relative velocity ratio occurs when, r ¼ r3h ¼ (34.4 � 20.1)/2 ¼ 7.15 mm, so that

w3h

w2
¼ 0:475� 2:904

	
0:4152 þ 0:75362


1=2 ¼ 1:19:

The relative velocity ratio corresponding to the mean exit radius is
w3

w2
¼ 0.475� 2.904

	
1þ 0.75362


1=2 ¼ 1.73.

It is worth commenting that higher total-to-static efficiencies have been obtained in other small radial turbines
operating at higher pressure ratios. Rodgers (1969) has suggested that total-to-static efficiencies in excess of 90% for
pressure ratios up to 5 to 1 can be attained. Nusbaum and Kofskey (1969) reported an experimental value of 88.8%
for a small radial turbine (fitted with an outlet diffuser, admittedly!) at a pressure ratio p01/p4 of 1.763. In the design
point exercise just given the high rotor enthalpy loss coefficient and the corresponding relatively low total-to-static
efficiency may well be related to the low relative velocity ratio determined on the hub. Matters are probably worse
than this as the calculation is based only on a simple one-dimensional treatment. In determining velocity ratios
across the rotor, account should also be taken of the effect of blade-to-blade velocity variation (outlined in this chap-
ter) as well as viscous effects. The number of vanes in the rotor (10) may be insufficient on the basis of Jamieson’s
theory2 (1955), which suggests 18 vanes (i.e., Zmin ¼ 2π tanα2). For this turbine, at lower nozzle exit angles, eqn.
(8.13) suggests that the relative velocity ratio becomes even less favourable despite the fact that the Jamieson blade
spacing criterion is being approached. (For Z ¼ 10, the optimum value of α2 is about 58°.)

2Included later in this chapter.
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8.6 MACH NUMBER RELATIONS
Assuming the fluid is a perfect gas, expressions can be deduced for the important Mach numbers in the
turbine. At nozzle outlet the absolute Mach number at the nominal design point is

M2 ¼ c2
a2

¼ U2

a2
cosec α2.

Now,

T2 ¼ T01 � c22=ð2CpÞ ¼ T01 � 1
2
U2

2 cosec
2 α2=Cp.

Therefore,

T2
T01

¼ 1� 1
2

γ� 1ð ÞðU2=a01Þ2 cosec2 α2,

where a2 ¼ a01(T2/T01)
1/2. Hence,

M2 ¼ U2=a01

sin α2 1� 1
2 γ� 1ð ÞðU2=a01Þ2 cosec2 α2

h i1=2 . ð8:14Þ

At rotor outlet the relative Mach number at the design point is defined by

M3, rel ¼ w3

a3
¼ r3U2

r2a3
cosec β3.

Now,

h3 ¼ h01 � U2
2 þ

1
2
c23

� �
¼ h01 � U2

2 þ
1
2
U2

3 cot 2β3

� �
¼ h01 �U2

2 1þ 1
2

r3
r2
cot β3

� �2
" #

,

a23 ¼ a201 � γ� 1ð ÞU2
2 1þ 1

2
r3
r2

cot β3

� �2
" #

;

therefore,

M3, rel ¼ ðU2=a01Þðr3=r2Þ

sin β3 1� γ� 1ð ÞðU2=a01Þ2 1þ 1
2

r3
r2

cot β3

� �2
" #( )1=2

. ð8:15Þ

8.7 LOSS COEFFICIENTS IN 90° IFR TURBINES
There are a number of ways of representing the losses in the passages of 90° IFR turbines and these
have been listed and inter-related by Benson (1970). As well as the nozzle and rotor passage losses
there is a loss at rotor entry at off-design conditions. This occurs when the relative flow entering
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the rotor is at some angle of incidence to the radial vanes so that it can be called an incidence loss. It is
often referred to as shock loss but this can be a rather misleading term because, usually, there is no
shock wave.

Nozzle Loss Coefficients
The enthalpy loss coefficient, which normally includes the inlet scroll losses, has already been defined
and is

ζN ¼ ðh2 � h2sÞ= 1
2
c22

� �
. ð8:16Þ

Also in use is the isentropic velocity coefficient,

�N ¼ c2=c2s, ð8:17Þ
and the stagnation pressure loss coefficient,

YN ¼ ðp01 � p02Þ=ðp02 � p2Þ, ð8:18aÞ
which can be related, approximately, to ζN by

YN ’ ζN 1þ 1
2
γM2

2

� �
. ð8:18bÞ

Since h01 ¼ h2 þ 1
2 c

2
2 ¼ h2s þ 1

2 c
2
2s, h2 � h2s ¼ 1

2 c22s � c22

 �

and

ζ N ¼ 1

�2
N

� 1. ð8:19Þ

Practical values of �N for well-designed nozzle rows in normal operation are usually in the range 0.90
< �N < 0.97 and 0.23 < ζN < 0.063.

Rotor Loss Coefficients
At either the design condition (Figure 8.4), or at the off-design condition dealt with later (Figure 8.5),
the rotor passage friction losses can be expressed in terms of the following coefficients.

The enthalpy loss coefficient is

ζ R ¼ ðh3 � h3sÞ= 1
2
w2
3

� �
. ð8:20Þ

The velocity coefficient is

�R ¼ w3=w3s, ð8:21Þ
which is related to ζR by

ζ R ¼ 1

�2
R

� 1. ð8:22Þ

The normal range of � for well-designed rotors is approximately, 0.70<�R< 0.85 and 1.04< ζR< 0.38.
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8.8 OPTIMUM EFFICIENCY CONSIDERATIONS
According to Abidat et al. (1992) the understanding of incidence effects on the rotors of radial- and
mixed-flow turbines is very limited. Normally, IFR turbines are made with radial vanes to reduce bend-
ing stresses. In most flow analyses that have been published of the IFR turbine, including all earlier
editions of this text, it was assumed that the average relative flow at entry to the rotor was radial,
i.e., the incidence of the relative flow approaching the radial vanes was zero. The following discussion
of the flow model will show that this is an over-simplification and the flow angle for optimum effi-
ciency is significantly different from zero incidence. Rohlik (1975) had asserted that “there is some
incidence angle that provides optimum flow conditions at the rotor-blade leading edge. This angle
has a value sometimes as high as 40° with a radial blade.”

The flow approaching the rotor is assumed to be in the radial plane with a velocity c2 and flow
angle α2 determined by the geometry of the nozzles or volute. Once the fluid enters the rotor the

P S P S

Direction
of rotation

(a)

U2

�2 �2

w2

c2

(b)

FIGURE 8.5

Optimum Flow Condition at Inlet to the Rotor: (a) Streamline Flow at Rotor Inlet—p is for Pressure Surface, s is for
Suction Surface; (b) Velocity Diagram for the Pitchwise Averaged Flow
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process of work extraction proceeds rapidly with reduction in the magnitude of the tangential velocity
component and blade speed as the flow radius decreases. Corresponding to these velocity changes is a
high blade loading and an accompanying large pressure gradient across the passage from the pressure
side to the suction side [Figure 8.5(a)].

With the rotor rotating at angular velocity Ω and the entering flow assumed to be irrotational,
a counter-rotating vortex (or relative eddy) is created in the relative flow, whose magnitude is
�Ω, which conserves the irrotational state. The effect is virtually the same as that described earlier
for the flow leaving the impeller of a centrifugal compressor but in reverse (see Section 7.8 entitled
“Slip Factor”). As a result of combining the incoming irrotational flow with the relative eddy,
the relative velocity on the pressure (or trailing) surface of the vane is reduced. Similarly, on the
suction (or leading) surface of the vane it is seen that the relative velocity is increased. Thus, a static
pressure gradient exists across the vane passage in agreement with the reasoning of the preceding
paragraph.

Figure 8.5(b) indicates the average relative velocity w2, entering the rotor at angle β2 and giving
optimum flow conditions at the vane leading edge. As the rotor vanes in IFR turbines are assumed
to be radial, the angle β2 is an angle of incidence, and as drawn it is numerically positive. Depending
upon the number of rotor vanes this angle may be between 20° and 40°. The static pressure gradient
across the passage causes a streamline shift of the flow towards the suction surface. Stream function
analyses of this flow condition show that the streamline pattern properly locates the inlet stagnation
point on the vane leading edge so that this streamline is approximately radial [see Figure 8.5(a)]. It
is reasoned that only at this flow condition will the fluid move smoothly into the rotor passage.
Thus, it is the averaged relative flow that is at an angle of incidence β2 to the vane. Whitfield and
Baines (1990) have comprehensively reviewed computational methods used in determining turboma-
chinery flows, including stream function methods.

Wilson and Jansen (1965) appear to have been the first to note that the optimum angle of incidence
was virtually identical to the angle of “slip” of the flow leaving the impeller of a radially bladed centri-
fugal compressor with the same number of vanes as the turbine rotor. Following Whitfield and Baines
(1990), an incidence factor, λ, is defined, analogous to the slip factor used in centrifugal compressors:

λ ¼ cθ2=U2.

The slip factor most often used in determining the flow angle at rotor inlet is that devised by Stanitz
(1952) for radial vaned impellers, so for the incidence factor

λ ¼ 1� 0:63π=Z ≈ 1� 2=Z: ð7:34bÞ
Thus, from the geometry of Figure 8.5(b), we obtain

tan β2 ¼ ð2=ZÞU2=cm2. ð8:23Þ
To determine the relative flow angle, β2, we need to know, at least, the values of the flow coefficient,
�2 ¼ cm2/U2 and the vane number Z. A simple method of determining the minimum number of vanes
needed in the rotor, due to Jamieson (1955), is given later in this chapter. However, in the next section
an optimum efficiency design method devised by Whitfield (1990) provides an alternative way for
deriving β2.
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Design for Optimum Efficiency
Whitfield (1990) presented a general one-dimensional design procedure for the IFR turbine in which,
initially, only the required power output is specified. The specific power output is given:

ΔW ¼
_W

_m
¼ h01 � h03 ¼ γR

γ� 1
ðT01 � T03Þ ð8:24Þ

and, from this a non-dimensional power ratio, S, is defined:

S ¼ ΔW=h01 ¼ 1� T03=T01. ð8:25Þ
The power ratio is related to the overall pressure ratio through the total-to-static efficiency:

ηts ¼
Sh

1�ðp3=p01Þðγ�1Þ=γ
i . ð8:26Þ

If the power output, mass flow rate, and inlet stagnation temperature are specified, then S can be
directly calculated but, if only the output power is known, then an iterative procedure must be
followed.

Whitfield (1990) chose to develop his procedure in terms of the power ratio S and evolved a new
non-dimensional design method. At a later stage of the design when the rate of mass flow and inlet
stagnation temperature can be quantified, the actual gas velocities and turbine size can be determined.
Only the first part of Whitfield’s method dealing with the rotor design is considered in this chapter.

Solution of Whitfield’s Design Problem
At the design point it is usually assumed that the fluid discharges from the rotor in the axial direction so
that with cθ3 ¼ 0, the specific work is

ΔW ¼ U2cθ2

and, combining this with eqns. (8.24) and (8.25), we obtain

U2cθ2=a
2
01 ¼ S=ðγ� 1Þ, ð8:27Þ

where a01 ¼ (γRT01)
1/2 is the speed of sound corresponding to the temperature T01.

Now, from the velocity triangle at rotor inlet, Figure 8.5(b),

U2 � cθ2 ¼ cm2 tan β2 ¼ cθ2 tan β2=tan α2. ð8:28Þ
Multiplying both sides of eqn. (8.28) by cθ2=c2m2, we get

U2cθ2=c
2
m2 � c2θ2=c

2
m2 � tan α2 tan β2 ¼ 0:

But,

U2cθ2=c
2
m2 ¼ ðU2cθ2=c

2
2Þsec 2α2 ¼ cð1þ tan 2α2Þ,

which can be written as a quadratic equation for tanα2:

ðc� 1Þtan 2 α 2 � b tan α2 þ c ¼ 0,
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where, for economy of writing, c ¼ U2cθ2=c22 and b ¼ tan β2. Solving for tan α2,

tan α2 ¼
�
b


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4cð1� cÞ

p �
=2ðc� 1Þ. ð8:29Þ

For a real solution to exist the radical must be greater than, or equal to, zero; i.e., b2 þ 4c(1 � c) ≥ 0.
Taking the zero case and rearranging the terms, another quadratic equation is found, namely,

c2 � c� b2=4 ¼ 0:

Hence, solving for c,

c ¼
�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p �
=2 ¼ 1

2
ð1
 sec β2Þ ¼ U2cθ2=c

2
2. ð8:30Þ

From eqn. (8.29) and then eqn. (8.30), the corresponding solution for tanα2 is

tan α2 ¼ b=½2ðc� 1Þ� ¼ tan β2=ð�1
 sec β2Þ.
The correct choice between these two solutions will give a value for α2 > 0; thus

tan α2 ¼ sin β2
1� cos β2

. ð8:31aÞ

It is easy to see from Table 8.1 that a simple numerical relation exists between these two parameters,
namely,

α2 ¼ 90� β2=2: ð8:31bÞ
From eqns. (8.27) and (8.30), after some rearranging, a minimum stagnation Mach number at rotor
inlet can be found:

M2
02 ¼ c22=a

2
01 ¼

S

γ�1
� �

2 cos β2
1þ cos β2

ð8:32Þ

and the inlet Mach number can be determined using the equation

M2
2 ¼

c2
a2

� �2

¼ M2
02

1� 1
2 γ�1ð ÞM2

02

, ð8:33Þ

assuming that T02 ¼ T01, as the flow through the stator is adiabatic.
Now, from eqn. (8.28)

cθ2
U2

¼ 1
1þ tan β2= tan α2

.

Table 8.1 Variation of α2 for Several Values of β2

Degrees

β2 10 20 30 40

α2 85 80 75 70
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After rearranging eqn. (8.31a) to give

tan β2=tan α2 ¼ sec β2 � 1 ð8:34Þ
and, combining these equations with eqn. (8.23),

cθ2=U2 ¼ cos β2 ¼ 1� 2=Z. ð8:35Þ
Equation (8.35) is a direct relationship between the number of rotor blades and the relative flow angle
at inlet to the rotor. Also, from eqn. (8.31b),

cos 2α2 ¼ cosð180� β2Þ ¼ �cos β2,

so that, from the identity cos 2α2 ¼ 2 cos2α2� 1, we get the result

cos 2α2 ¼ ð1� cos β2Þ=2 ¼ 1=Z, ð8:31cÞ
using also eqn. (8.35).

Example 8.3
An IFR turbine with 12 vanes is required to develop 230 kW from a supply of dry air available at a stagnation
temperature of 1050 K and a flow rate of 1 kg/s. Using the optimum efficiency design method and assuming a
total-to-static efficiency of 0.81, determine

(i) the absolute and relative flow angles at rotor inlet;
(ii) the overall pressure ratio, p01/p3;
(iii) the rotor tip speed and the inlet absolute Mach number.

Solution
(i) From the gas tables, e.g., Rogers and Mayhew (1995) or NIST Properties of Fluids Tables, at T01 ¼ 1050 K,

we can find values for Cp ¼ 1.1502 kJ/kgK and γ ¼ 1.333. Using eqn. (8.25),

S ¼ ΔW=ðCpT01Þ ¼ 230=ð1:15� 1050Þ ¼ 0:2:

From Whitfield’s eqn. (8.31c),

cos 2α2 ¼ 1=Z ¼ 0:083333,

therefore, α2 ¼ 73.22° and, from eqn. (8.31b), β2 ¼ 2(90 � α2) ¼ 33.56°.

(ii) Rewriting eqn. (8.26),

p3
p01

¼ 1� S

ηts

� �γ=ðγ�1Þ
¼ 1� 0:2

0:81

� �4
¼ 0:32165,

therefore, p01/p003 ¼ 3.109.

(iii) Using eqn. (8.32),

M2
02 ¼

S
γ� 1

� �
2 cos β2

1þ cos β2
¼ 0.2

0.333
� 2� 0.8333

1þ 0.8333
¼ 0.5460
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therefore, M ¼ 0.7389. Using eqn. (8.33),

M2
2 ¼

M2
02

1� 1
2 γ� 1ð ÞM2

02

¼ 0.546
1�ð0.333=2Þ� 0.546

¼ 0.6006

and M2 ¼ 0.775. To find the rotor tip speed, substitute eqn. (8.35) into eqn. (8.27) to obtain

U2
2

a201

� �
cos β2 ¼

S

γ� 1
,

therefore,

U2 ¼ a01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

ðγ� 1Þ cos β2

s
¼ 633.8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.2

0.333� 0.8333

r
¼ 538.1m=s,

where

a01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT01

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1.333� 287� 1, 050

p
¼ 633.8m=s,

and T02 ¼ T01 is assumed.

8.9 CRITERION FOR MINIMUM NUMBER OF BLADES
The following simple analysis of the relative flow in a radially bladed rotor is of considerable interest
as it illustrates an important fundamental point concerning blade spacing. From elementary mechanics,
the radial and transverse components of acceleration, fr and ft, respectively, of a particle moving in a
radial plane [Figure 8.6(a)] are

fr ¼ _w�Ω2r ð8:36aÞ
ft ¼ r _Ωþ 2Ωw, ð8:36bÞ

where w is the radial velocity, _w ¼ ðdwÞ=ðdtÞ ¼ wð∂wÞ=ð∂rÞ (for steady flow), Ω is the angular velo-
city and _Ω ¼ dΩ=dt is set equal to zero.

Applying Newton’s second law of motion to a fluid element (as shown in Figure 6.2) of unit depth,
ignoring viscous forces, but putting cr ¼ w, the radial equation of motion is

ðpþ dpÞðr þ drÞdθ� prdθ� pdrdθ ¼ �frdm,

where the elementary mass dm ¼ ρrdθdr. After simplifying and substituting for fr from eqn. (8.36a),
the following result is obtained,

1
ρ
∂p
∂r

þ w
∂w
∂r

¼ Ω2r. ð8:37Þ

Integrating eqn. (8.37) with respect to r obtains

p=ρþ 1
2
w2 � 1

2
U2 ¼ constant, ð8:38Þ

which is merely the inviscid form of eqn. (8.2a).
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The torque transmitted to the rotor by the fluid manifests itself as a pressure difference across each
radial vane. Consequently, there must be a pressure gradient in the tangential direction in the space
between the vanes. Again, consider the element of fluid and apply Newton’s second law of motion
in the tangential direction:

dp� dr ¼ ftdm ¼ 2ΩwðρrdθdrÞ.
Hence,

1
ρ
∂p
∂θ

¼ 2Ωrw, ð8:39Þ

which establishes the magnitude of the tangential pressure gradient. Differentiating eqn. (8.38) with
respect to θ,

1
ρ
∂p
∂θ

¼ �w
∂w
∂θ

. ð8:40Þ

Radial velocity,W
Radial acceleration, fr

(a) Motion of particle in a radial plane

Insufficient blades
at this radius

Region of flow reversal

(b) Optimum radius to avoid
      flow reversal, ropt

Tangential velocity, Vr
Tangential acceleration, ft

r
V

V

ropt

FIGURE 8.6

Flow Models Used in Analysis of Minimum Number of Blades
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Thus, combining eqns. (8.39) and (8.40) gives

∂w
∂θ

¼ �2Ωr: ð8:41Þ

This result establishes the important fact that the radial velocity is not uniform across the passage as is
frequently assumed. As a consequence the radial velocity on one side of a passage is lower than on the
other side. Jamieson (1955), who originated this method, conceived the idea of determining the mini-
mum number of blades based upon these velocity considerations.

Let the mean radial velocity be w and the angular space between two adjacent blades be Δθ ¼ 2π/Z
where Z is the number of blades. The maximum and minimum radial velocities are, therefore,

wmax ¼ w þ 1
2
Δw ¼ w þ ΩrΔθ ð8:42aÞ

wmin ¼ w� 1
2
Δw ¼ w�ΩrΔθ ð8:42bÞ

using eqn. (8.41).
Making the reasonable assumption that the radial velocity should not drop below zero [see

Figure 8.6(b)], the limiting case occurs at the rotor tip, r ¼ r2 with wmin ¼ 0. From eqn. (8.42b)
with U2 ¼ Ωr2, the minimum number of rotor blades is

Zmin ¼ 2πU2=w2. ð8:43aÞ
At the design condition, U2 ¼ w2 tan α2, hence,

Zmin ¼ 2π tan α2. ð8:43bÞ
Jamieson’s result, eqn. (8.43b), is plotted in Figure 8.7 and shows that a large number of rotor vanes are
required, especially for high absolute flow angles at rotor inlet. In practice a large number of vanes are not
used for several reasons, e.g., excessive flow blockage at rotor exit, a disproportionally large “wetted”
surface area causing high friction losses, and the weight and inertia of the rotor become relatively high.

Some experimental tests reported by Hiett and Johnston (1964) are of interest in connection with
the analysis just presented. With a nozzle outlet angle α2 ¼ 77° and a 12 vane rotor, a total-to-static
efficiency ηts ¼ 0.84 was measured at the optimum velocity ratio U2/c0. For that magnitude of flow
angle, eqn. (8.43b) suggests 27 vanes would be required to avoid reverse flow at the rotor tip. How-
ever, a second test with the number of vanes increased to 24 produced a gain in efficiency of only 1%.
Hiett and Johnston suggested that the criterion for the optimum number of vanes might not simply be
the avoidance of local flow reversal but require a compromise between total pressure losses from this
cause and friction losses based upon rotor and blade surface areas.

Glassman (1976) preferred to use an empirical relationship between Z and α2, namely,

Z ¼ π

30
ð110� α2Þ tan α2, ð8:44Þ

as he also considered Jamieson’s result, eqn. (8.43b), gave too many vanes in the rotor. Glassman’s
result, which gives far fewer vanes than Jamieson’s is plotted in Figure 8.7. Whitfield’s result,
given in eqn. (8.31c), is not too dissimilar from the result given by Glassman’s equation, at least
for low vane numbers.
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8.10 DESIGN CONSIDERATIONS FOR ROTOR EXIT
Several decisions need to be made regarding the design of the rotor exit. The flow angle β3, the meri-
dional velocity to blade tip speed ratio cm3/U2, the shroud tip to rotor tip radius ratio r3s/r2, and the exit
hub to shroud radius ratio ν ¼ r3h/r3s, all have to be considered. It is assumed that the absolute flow at
rotor exit is entirely axial so that the relative velocity can be written

w2
3 ¼ c2m3 þ U2

3 .

If values of cm3/U2 and r3/r2 can be chosen, then the exit flow angle variation can be found for all radii.
From the rotor exit velocity diagram in Figure 8.3,

cot β3 rð Þ ¼ cm3
U2

r2
r

ð8:45Þ

The meridional velocity cm3 should be kept small in order to minimise the exhaust energy loss, unless
an exhaust diffuser is fitted to the turbine.

Rodgers and Geiser (1987) correlated attainable efficiency levels of IFR turbines against the blade
tip speed–spouting velocity ratio, U2/c0, and the axial exit flow coefficient, cm3/U2, and their result is
shown in Figure 8.8. From this figure it can be seen that peak efficiency values are obtained with velo-
city ratios close to 0.7 and with values of exit flow coefficient between 0.2 and 0.3.

Rohlik (1968) suggested that the ratio of mean rotor exit radius to rotor inlet radius, r3/r2,
should not exceed 0.7 to avoid excessive curvature of the shroud. Also, the exit hub to shroud radius
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Flow Angle at Rotor Inlet as a Function of the Number of Rotor Vanes
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ratio, r3h/r3s, should not be less than 0.4 because of the likelihood of flow blockage caused by closely
spaced vanes. Based upon the metal thickness alone it is easily shown that

ð2πr3h=ZÞ cos β3h > t3h,

where t3h is the vane thickness at the hub. It is also necessary to allow more than this thickness because
of the boundary layers on each vane. Some of the rather limited test data available on the design of the
rotor exit comes from Rodgers and Geiser (1987) and concerns the effect of rotor radius ratio and blade
solidity on turbine efficiency (see Figure 8.9). It is the relative efficiency variation, η/ηopt, that is
depicted as a function of the rotor inlet radius–exit root mean square radius ratio, r2/r3rms, for various
values of a blade solidity parameter, ZL/D2 (where L is the length of the blade along the mean mer-
idian). This radius ratio is related to the rotor exit hub to shroud ratio, ν, by

r3rms

r2
¼ r3s

r2

1þ ν 2

2

� �1=2

.

From Figure 8.9, for r2/r3rms, a value between 1.6 and 1.8 appears to be the optimum.
Rohlik (1968) suggested that the ratio of the relative velocity at the mean exit radius to the inlet

relative velocity, w3/w2, should be sufficiently high to assure a low total pressure loss. He gave w3/w2

a value of 2.0. The relative velocity at the shroud tip will be greater than that at the mean radius depending
upon the radius ratio at rotor exit.

Example 8.4
Given the following data for an IFR turbine,

cm3=U2 ¼ 0:25, ν ¼ 0:4, r3s=r2 ¼ 0:7 and w3=w2 ¼ 2.0,

determine the ratio of the relative velocity ratio, w3s/w2 at the shroud.
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FIGURE 8.8

Correlation of Attainable Efficiency Levels of IFR Turbines against Velocity Ratios (Adapted from Rodgers and
Geiser, 1987)
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Solution
As w3s/cm3 ¼ sec β3s and w3/cm3 ¼ sec β3,

w3s

w3
¼ sec β3s

sec β3
.

r3
r3s

¼ 1
2

1þ νð Þ ¼ 0:7 and
r3
r2

¼ r3
r3s

r3s
r2

¼ 0.7� 0.7 ¼ 0.49.

From eqn. (8.45), the angle at mean radius is given by,

cot β3 ¼
cm3
U2

r2
r3

¼ 0:25
0:49

¼ 0:5102

hence, β3 ¼ 62.97°,

cot β3s ¼
cm3
U2

r2
r3s

¼ 0:25
0:7

¼ 0.3571

hence, β3s ¼ 70.35°, and, therefore,

w3s

w2
¼ w3s

w3

w3

w2
¼ sec β3s

sec β3
� 2 ¼ 0.4544

0.3363
� 2 ¼ 2.702.

The relative velocity ratio will increase progressively from the hub to the shroud.
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Effects of Vane Solidity and Rotor Radius Ratio on the Efficiency Ratio of the IFR Turbine (Adapted from Rodgers
and Geiser, 1987)
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Example 8.5
Using the data and results given in Examples 8.3 and 8.4 together with the additional information that the static
pressure at rotor exit is 100 kPa and the nozzle enthalpy loss coefficient, ζN ¼ 0.06, determine

(i) the diameter of the rotor and its speed of rotation;
(ii) the vane width to diameter ratio, b2/D2 at rotor inlet.

Solution
(i) The rate of mass flow is given by

_m ¼ ρ3cm3A3 ¼ p3
RT3

� �
cm3

U2

� �
U2π

r3s
r2

� �2

ð1� ν2Þr22.

From eqn. (8.25), T03 ¼ T01(1 � S) ¼ 1050� 0.8 ¼ 840K,

T3 ¼ T03 � c2m3=ð2CpÞ ¼ T03 � cm3

U2

� �2 U2
2

2Cp
¼ 840� 0.252 � 5.38.12=ð2� 1150.2Þ.

Hence, T3 ¼ 832.1K.
Substituting values into this mass flow equation,

1 ¼ ½105=ð287� 832:1Þ� � 0:25� 538:1� 0:72 � π�ð1� 0:42Þr22 ;

therefore,

r22 ¼ 0:01373 and r2 ¼ 0:1172m,

D2 ¼ 0:2343m

Ω ¼ U2=r2 ¼ 4591:3 rad=s ðN ¼ 43, 843 rev=minÞ.
(ii) The rate of mass flow equation is now written as

_m ¼ ρ2cm2A2, where A2 ¼ 2πr2b2 ¼ 4πr22ðb2=D2Þ.

Solving for the absolute velocity at rotor inlet and its components,

cθ2 ¼ SCpT01=U2 ¼ 0:2� 1150:2� 1050=538:1 ¼ 448:9m=s,

cm2 ¼ cθ2=tan α2 ¼ 448:9=3:3163 ¼ 135:4m=s,

c2 ¼ cθ2=sin α2 ¼ 448:9=0:9574 ¼ 468: 8m=s.

To obtain a value for the static density, ρ2, we need to determine T2 and p2:

T2 ¼ T02 � c22=ð2CpÞ ¼ 1050� 468:82=ð2� 1150:2Þ ¼ 954:5K,

h02 � h2 ¼ 1
2
c22 and as ζN ¼ ðh2 � h2sÞ 1

2
c22

� �
, h01 � h2s ¼ 1

2
c22ð1þ ζNÞ, so

�
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T02 � T2s
T02

¼ c22ð1þ ζNÞ
2CpT02

¼ 468:82 � 1:06
2� 1150:2� 1050

¼ 0:096447

T2s
T01

¼ p2
p01

� �ðγ�1Þ=γ
¼ 1� 0:09645 ¼ 0:90355.

Therefore,

p2
p01

¼ T2s
T01

� �γ=ðγ�1Þ
¼ 0:903554 ¼ 0:66652,

p2 ¼ 3:109� 105 � 0:66652 ¼ 2:0722� 105 Pa,

b2
D2

¼ 1
4π

RT2
p2

� �
_m

cm2r22

� �
¼ 1

4� π
287� 954:5

2:0722� 105

� �
1

135:4� 0:01373
¼ 0:0566:

Example 8.6
For the IFR turbine described in Example 8.3 and using the data and results in Examples 8.4 and 8.5, deduce a
value for the rotor enthalpy loss coefficient, ζR, at the optimum efficiency flow condition.

Solution
From eqn. (8.10), solving for ζR,

ζ R ¼ ½ð1� ηtsÞc20 � c23 � ζNc
2
2�=w2

3.

We need to find values for c0, c3, w3, and c2.
From the data,

c3 ¼ cm3 ¼ 0:25� 538:1 ¼ 134:5m=s.

w3 ¼ 2w2 ¼ 2cm2=cos β2 ¼ 2� 135:4=cos 33:560 ¼ 324:97m=s.

1
2
c20 ¼ ΔW=ηts ¼ 230� 103=0:81 ¼ 283:95� 103.

c2 ¼ 468:8m=s.

Therefore,

ζ R ¼ ð2� 283:95� 103 � 0:19� 134:52 � 0:06� 468:82Þ=324:972
¼ 76, 624=105, 605 ¼ 0:7256:
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8.11 SIGNIFICANCE AND APPLICATION OF SPECIFIC SPEED
The concept of specific speed Ns has already been discussed in Chapter 2 and some applications of it
have been made already. Specific speed is extensively used to describe turbomachinery operating
requirements in terms of shaft speed, volume flow rate and ideal specific work (alternatively, power
developed is used instead of specific work). Originally, specific speed was applied almost exclusively
to incompressible flow machines as a tool in the selection of the optimum type and size of unit. Its
application to units handling compressible fluids was somewhat inhibited, due, it would appear, to
the fact that volume flow rate changes through the machine, which raised the awkward question of
which flow rate should be used in the specific speed definition. According to Balje (1981), the signi-
ficant volume flow rate that should be used for turbines is that in the rotor exit, Q3. This has now been
widely adopted by many authorities.

Wood (1963) found it useful to factorise the basic definition of the specific speed equation,
eqn. (2.14a), in terms of the geometry and flow conditions within the radial-inflow turbine. Adopting
the non-dimensional form of specific speed, to avoid ambiguities,

Ns ¼ NQ1=2
3

Δh3=40s

, ð8:46Þ

where N is in rev/s, Q3 is in m
3/s, and the isentropic total-to-total enthalpy drop Δh0s (from turbine inlet

to exhaust) is in joules per kilogram (i.e., square metres per second squared).
For the 90° IFR turbine, writingU2 ¼ πND2 and Δh0s ¼ 1

2 c
2
0, eqn. (8.46) can be factorised as follows:

Ns ¼ Q1=2
3

1
2 c

2
0


 �3=4 U2

πD2

� �
U2

πND2

� �1=2

¼
ffiffiffi
2

p

π

� �3=2
U2

c0

� �3=2 Q3

ND3
2

� �1=2

. ð8:47aÞ

For the ideal 90° IFR turbine and with cθ2 ¼ U2, it was shown earlier that the blade speed to spouting
velocity ratio, U2=c0 ¼

ffiffiffi
2

p ¼ 0:707. Substituting this value into eqn. (8.47a),

Ns ¼ 0:18
Q3

ND3
2

� �1=2

, revð Þ ð8:47bÞ

i.e., specific speed is directly proportional to the square root of the volumetric flow coefficient.
To obtain some physical significance from eqns. (8.46) and (8.47b), define a rotor disc area

Ad ¼ πD2
2=4 and assume a uniform axial rotor exit velocity c3 so that Q3 ¼ A3c3, as

N ¼ U2=ðπD2Þ ¼ c0
ffiffiffi
2

p

2πD2

Q3

ND3
2

¼ A3c32πD2ffiffiffi
2

p
c0D2

2

¼ A3

Ad

c3
c0

π2

2
ffiffiffi
2

p .

Hence,

Ns ¼ 0:336
c3
c0

� �1=2 A3

Ad

� �1=2

, revð Þ ð8:47cÞ
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or

Ωs ¼ 2:11
c3
c0

� �1=2 A3

Ad

� �1=2
, radð Þ ð8:47dÞ

In an early study of IFR turbine design for maximum efficiency, Rohlik (1968) specified that the
ratio of the rotor shroud diameter to rotor inlet diameter should be limited to a maximum value of 0.7 to
avoid excessive shroud curvature and that the exit hub–shroud tip ratio was limited to a minimum of
0.4 to avoid excess hub blade blockage and loss. Using this as data, an upper limit for A3/Ad can be
found,

A3

Ad
¼ D3s

D2

� �2

1� D3h

D3s

� �2
" #

¼ 0:72 � 1� 0:16ð Þ ¼ 0:41:

Figure 8.10 shows the relationship between Ωs, the exhaust energy factor (c3/c0)
2, and the area ratio A3/

Ad based upon eqn. (8.47d). According to Wood (1963), the limits for the exhaust energy factor in gas
turbine practice are 0.04 < (c3/c0)

2 < 0.30, the lower value being apparently a flow stability limit.
The numerical value of specific speed provides a general index of flow capacity relative to work

output. Low values of Ωs are associated with relatively small flow passage areas and high values
with relatively large flow passage areas. Specific speed has also been widely used as a general indica-
tion of achievable efficiency. Figure 8.11 presents a broad correlation of maximum efficiencies for
hydraulic and compressible fluid turbines as functions of specific speed. These efficiencies apply to
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Specific Speed Function for a 90° Inward Flow Radial Turbine (Adapted from Wood, 1963)
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favourable design conditions with high values of flow Reynolds number, efficient diffusers and low
leakage losses at the blade tips. It is seen that over a limited range of specific speed the best radial-
flow turbines match the best axial-flow turbine efficiency, but from Ωs ¼ 0.03 to 10 no other form
of turbine handling compressible fluids can exceed the peak performance capability of the axial
turbine.

Over the fairly limited range of specific speed (0.3 < Ωs < 1.0) that the IFR turbine can produce a
high efficiency, it is difficult to find a decisive performance advantage in favour of either the axial-flow
turbine or the radial-flow turbine. New methods of fabrication enable the blades of small axial-flow
turbines to be cast integrally with the rotor so that both types of turbine can operate at about the
same blade tip speed. Wood (1963) compared the relative merits of axial and radial gas turbines at
some length. In general, although weight, bulk, and diameter are greater for radial than axial turbines,
the differences are not so large and mechanical design compatibility can reverse the difference in a
complete gas turbine power plant. The NASA nuclear Brayton cycle space power studies were all
made with 90° IFR turbines rather than with axial-flow turbines.

The design problems of a small axial-flow turbine were discussed by Dunham and Panton (1973)
who studied the cold performance measurements made on a single-shaft turbine of 13 cm diameter,
about the same size as the IFR turbines tested by NASA. Tests had been performed with four rotors
to try to determine the effects of aspect ratio, trailing edge thickness, Reynolds number and tip clear-
ance. One turbine build achieved a total-to-total efficiency of 90%, about equal to that of the best IFR
turbine. However, because of the much higher outlet velocity, the total-to-static efficiency of the axial
turbine gave a less satisfactory value (84%) than the IFR type which could be decisive in some appli-
cations. They also confirmed that the axial turbine tip clearance was comparatively large, losing 2%
efficiency for every 1% increase in clearance. The tests illustrated one major design problem of a
small axial turbine that was the extreme thinness of the blade trailing edges needed to achieve the effi-
ciencies stated.
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Specific Speed–Efficiency Characteristics for Various Turbines (Adapted from Wood, 1963)
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8.12 OPTIMUM DESIGN SELECTION OF 90° IFR TURBINES
Rohlik (1968) has examined analytically the performance of 90° inward-flow radial turbines to
determine optimum design geometry for various applications as characterised by specific speed. His
procedure, which extends an earlier treatment of Wood (1963), was used to determine the design
point losses and corresponding efficiencies for various combinations of nozzle exit flow angle α2,
rotor diameter ratio D2/D3, and rotor blade entry height to exit diameter ratio, b2/D3. The losses
taken into account in the calculations are those associated with

(i) nozzle blade row boundary layers;
(ii) rotor passage boundary layers;
(iii) rotor blade tip clearance;
(iv) disc windage (on the back surface of the rotor);
(v) kinetic energy loss at exit.

A mean flow path analysis was used and the passage losses were based upon the data of Stewart,
Witney, and Wong (1960). The main constraints in the analysis were

(i) w3/w2 ¼ 2.0;
(ii) cθ3 ¼ 0;
(iii) β2 ¼ β2,opt, i.e., zero incidence;
(iv) r3s/r2 ¼ 0.7;
(v) r3h/r3s ¼ 0.4.

Figure 8.12 shows the variation in total-to-static efficiency with specific speed (Ωs) for a selection
of nozzle exit flow angles, α2. For each value of α2 a hatched area is drawn, inside of which the various
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Calculated Performance of 90° IFR Turbine (Adapted from Rohlik, 1968)
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diameter ratios are varied. The envelope of maximum ηts is bounded by the constraints D3h/D3s ¼ 0.4 in
all cases andD3s/D2 ¼ 0.7 forΩs ≥ 0.58 in these hatched regions. This envelope is the optimum geometry
curve and has a peak ηts of 0.87 at Ωs ¼ 0.58 rad. An interesting comparison is made by Rohlik with the
experimental results obtained by Kofskey and Wasserbauer (1966) on a single 90° IFR turbine rotor
operated with several nozzle blade row configurations. The peak value of ηts from this experimental
investigation also turned out to be 0.87 at a slightly higher specific speed, Ωs ¼ 0.64 rad.

The distribution of losses for optimum geometry over the specific speed range is shown in
Figure 8.13. The way the loss distributions change is a result of the changing ratio of flow to specific
work. At low Ωs all friction losses are relatively large because of the high ratios of surface area to flow
area. At high Ωs the high velocities at turbine exit cause the kinetic energy leaving loss to predominate.

Figure 8.14 shows several meridional plane sections at three values of specific speed corresponding
to the curve of maximum total-to-static efficiency. The ratio of nozzle exit height–rotor diameter,

(a) Vs5 0.23 rad
     U2 /c05 0.68

(b) Vs5 0.54 rad
     U2 /c05 0.70

(c) Vs5 1.16 rad
     U2 /c05 0.62
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FIGURE 8.14

Sections of Radial Turbines of Maximum Static Efficiency (Adapted from Rohlik, 1968)
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b2/D2, is shown in Figure 8.15, the general rise of this ratio with increasing Ωs reflecting the increase in
nozzle flow area3 accompanying the larger flow rates of higher specific speed. Figure 8.15 also shows
the variation of U2/c0 with Ωs along the curve of maximum total-to-static efficiency.

8.13 CLEARANCE AND WINDAGE LOSSES
A clearance gap must exist between the rotor vanes and the shroud. Because of the pressure difference
between the pressure and suction surfaces of a vane, a leakage flow occurs through the gap introducing
a loss in efficiency of the turbine. The minimum clearance is usually a compromise between manufac-
turing difficulty and aerodynamic requirements. Often, the minimum clearance is determined by the
differential expansion and cooling of components under transient operating conditions that can com-
promise the steady state operating condition. According to Rohlik (1968) the loss in specific work as a
result of gap leakage can be determined with the simple proportionality

Δhc ¼ Δh0ðc=bmÞ, ð8:48Þ
where Δh0 is the turbine specific work uncorrected for clearance or windage losses and c/bm is the ratio
of the gap to average vane height [i.e., bm ¼ 1

2 (b2 þ b3)]. A constant axial and radial gap, c ¼ 0.25mm,
was used in the analytical study of Rohlik quoted earlier. According to Rodgers (1969) extensive
development on small gas turbines has shown that it is difficult to maintain clearances less than
about 0.4mm. One consequence of this is that as small gas turbines are made progressively smaller
the relative magnitude of the clearance loss must increase.
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Variation in Blade Speed–Spouting Velocity Ratio (U2/c0) and Nozzle Blade Height–Rotor Inlet Diameter (b2/D2)
Corresponding to Maximum Total-to-Static Efficiency with Specific Speed (Adapted from Rohlik, 1968)

3The ratio b2/D2 is also affected by the pressure ratio but this has not been shown.
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The non-dimensional power loss due to windage on the back of the rotor has been given by
Shepherd (1956) in the form

ΔPw=ð ρ2Ω3D5
2Þ ¼ constant�Re�1=5,

where Ω is the rotational speed of the rotor and Re is a Reynolds number. Rohlik (1968) used this
expression to calculate the loss in specific work due to windage,

Δhw ¼ 0:56 ρ2D
2
2ðU2=100Þ3=ð _m ReÞ, ð8:49Þ

where _m is the total rate of mass flow entering the turbine and the Reynolds number is defined by
Re ¼ U2D2/ν2, ν2 being the kinematic viscosity of the gas corresponding to the static temperature
T2 at nozzle exit.

8.14 COOLED 90° IFR TURBINES
The incentive to use higher temperatures in the basic Brayton gas turbine cycle is well known and
arises from a desire to increase cycle efficiency and specific work output. In all gas turbines designed
for high efficiency a compromise is necessary between the turbine inlet temperature desired and the
temperature that can be tolerated by the turbine materials used. This problem can be minimised by
using an auxiliary supply of cooling air to lower the temperature of the highly stressed parts of the
turbine exposed to the high temperature gas. Following the successful application of blade cooling
techniques to axial flow turbines, methods of cooling small radial gas turbines have been developed.

According to Rodgers (1969) the most practical method of cooling small radial turbines is by film
(or veil) cooling, Figure 8.16, where cooling air is impinged on the rotor and vane tips. The main pro-
blem with this method of cooling being its relatively low cooling effectiveness, defined by

ε ¼ T01 �ðTm þ ΔT0Þ
T01 �ðT0c þ ΔT0Þ , ð8:50Þ

where Tm is the rotor metal temperature,

ΔT0 ¼ 1
2
U2

2=Cp.

Rodgers refers to tests that indicate the possibility of obtaining ε ¼ 0.30 at the rotor tip section with a
cooling flow of approximately 10% of the main gas flow. Since the cool and hot streams rapidly mix,
effectiveness decreases with distance from the point of impingement. A model study of the heat trans-
fer aspects of film-cooled radial-flow gas turbines is given by Metzger and Mitchell (1966).

Main flow

Film flow Rotor

Vane

FIGURE 8.16

Cross-Section of Film-Cooled Radial Turbine
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PROBLEMS

1. A small inward radial flow gas turbine, comprising a ring of nozzle blades, a radial-vaned rotor
and an axial diffuser, operates at the nominal design point with a total-to-total efficiency of 0.90.
At turbine entry the stagnation pressure and temperature of the gas is 400 kPa and 1140K. The
flow leaving the turbine is diffused to a pressure of 100 kPa and has negligible final velocity.
Given that the flow is just choked at nozzle exit, determine the impeller peripheral speed and
the flow outlet angle from the nozzles. For the gas assume γ ¼ 1.333 and R ¼ 287 J/(kg°C).

2. The mass flow rate of gas through the turbine given in Problem 1 is 3.1 kg/s, the ratio of the rotor
axial width–rotor tip radius (b2/r2) is 0.1 and the nozzle isentropic velocity ratio (�2) is 0.96.
Assuming that the space between nozzle exit and rotor entry is negligible and ignoring the effects
of blade blockage, determine

(i) the static pressure and static temperature at nozzle exit;
(ii) the rotor tip diameter and rotational speed;
(iii) the power transmitted assuming a mechanical efficiency of 93.5%.

3. A radial turbine is proposed as the gas expansion element of a nuclear powered Brayton cycle
space power system. The pressure and temperature conditions through the stage at the design
point are to be as follows:

Upstream of nozzles, p01 ¼ 699 kPa, T01 ¼ 1145K;
Nozzle exit, p2 ¼ 527.2 kPa, T2 ¼ 1029K;
Rotor exit, p3 ¼ 384.7 kPa, T3 ¼ 914.5 K; T03 ¼ 924.7K.

The ratio of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 and the required
rotational speed as 24,000 rev/min. Assuming the relative flow at rotor inlet is radial and the
absolute flow at rotor exit is axial, determine

(i) the total-to-static efficiency of the turbine;
(ii) the rotor diameter;
(iii) the implied enthalpy loss coefficients for the nozzles and rotor row.

The gas employed in this cycle is a mixture of helium and xenon with a molecular weight of
39.94 and a ratio of specific heats of 5/3. The universal gas constant is R0 ¼ 8.314 kJ/(kg-mol K).

4. A film-cooled radial inflow turbine is to be used in a high performance open Brayton cycle gas
turbine. The rotor is made of a material able to withstand a temperature of 1145K at a tip speed
of 600 m/s for short periods of operation. Cooling air is supplied by the compressor that operates
at a stagnation pressure ratio of 4 to 1, with an isentropic efficiency of 80%, when air is admitted
to the compressor at a stagnation temperature of 288K. Assuming that the effectiveness of the
film cooling is 0.30 and the cooling air temperature at turbine entry is the same as that at com-
pressor exit, determine the maximum permissible gas temperature at entry to the turbine. Take
γ ¼ 1.4 for the air. Take γ ¼ 1.333 for the gas entering the turbine. Assume R ¼ 287 J/(kgK) in
both cases.
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5. The radial inflow turbine in Problem 3 is designed for a specific speed Ωs of 0.55 (rad).
Determine

(i) the volume flow rate and the turbine power output;
(ii) the rotor exit hub and tip diameters;
(iii) the nozzle exit flow angle and the rotor inlet passage width–diameter ratio, b2/D2.

6. An inward flow radial gas turbine with a rotor diameter of 23.76 cm is designed to operate with a
gas mass flow of 1.0 kg/s at a rotational speed of 38,140 rev/min. At the design condition the
inlet stagnation pressure and temperature are to be 300 kPa and 727°C. The turbine is to be
“cold” tested in a laboratory where an air supply is available only at the stagnation conditions
of 200 kPa and 102°C.

(i) Assuming dynamically similar conditions between those of the laboratory and the projected
design determine, for the “cold” test, the equivalent mass flow rate and the speed of rotation.
Assume the gas properties are the same as for air.

(ii) Using property tables for air, determine the Reynolds numbers for both the hot and cold
running conditions. The Reynolds number is defined in this context as

Re ¼ ρ01ND
2=μ01,

where ρ01 and μ01 are the stagnation density and stagnation viscosity of the air, N is the rotational
speed (rev/s), and D is the rotor diameter.

7. For the radial flow turbine described in the previous problem and operating at the prescribed
“hot” design point condition, the gas leaves the exducer directly to the atmosphere at a pressure
of 100 kPa and without swirl. The absolute flow angle at rotor inlet is 72° to the radial direction.
The relative velocity w3 at the mean radius of the exducer (which is one half of the rotor inlet
radius r2) is twice the rotor inlet relative velocity w2. The nozzle enthalpy loss coefficient,
ζN ¼ 0.06. Assuming the gas has the properties of air with an average value of γ ¼ 1.34 (this
temperature range) and R ¼ 287 J/kgK, determine

(i) the total-to-static efficiency of the turbine;
(ii) the static temperature and pressure at the rotor inlet;
(iii) the axial width of the passage at inlet to the rotor;
(iv) the absolute velocity of the flow at exit from the exducer;
(v) the rotor enthalpy loss coefficient;
(vi) the radii of the exducer exit given that the radius ratio at that location is 0.4.

8. One of the early space power systems built and tested for NASA was based on the Brayton cycle
and incorporated an IFR turbine as the gas expander. Some of the data available concerning the
turbine are as follows:

Total-to-total pressure ratio (turbine inlet to turbine exit), p01/p03 ¼ 1.560;
Total-to-static pressure ratio, p01/p3 ¼ 1.613;
Total temperature at turbine entry, T01 ¼ 1083K;
Total pressure at inlet to turbine, T01 ¼ 91 kPa;
Shaft power output (measured on a dynamometer), Pnet ¼ 22.03 kW;
Bearing and seal friction torque (a separate test), τf ¼ 0.0794Nm;
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Rotor diameter, D2 ¼ 15.29 cm;
Absolute flow angle at rotor inlet, α2 ¼ 72°;
Absolute flow angle at rotor exit, α3 ¼ 0°;
The hub to shroud radius ratio at rotor exit, r3h/r3s ¼ 0.35;

Ratio of blade speed to jet speed, ν ¼ U2/c0 ¼ 0.6958;
(c0 based on total-to-static pressure ratio.)

For reasons of crew safety, an inert gas argon (R ¼ 208.2 J/(kg K), ratio of specific heats,
γ ¼ 1.667) was used in the cycle. The turbine design scheme was based on the concept of opti-
mum efficiency. Determine, for the design point

(i) the rotor vane tip speed;
(ii) the static pressure and temperature at rotor exit;
(iii) the gas exit velocity and mass flow rate;
(iv) the shroud radius at rotor exit;
(v) the relative flow angle at rotor inlet;
(vi) the specific speed.

Note: The volume flow rate to be used in the definition of the specific speed is based on the rotor
exit conditions.

9. What is meant by the term nominal design in connection with a radial flow gas turbine rotor? Sketch
the velocity diagrams for a 90° IFR turbine operating at the nominal design point. At entry to a 90°
IFR turbine the gas leaves the nozzle vanes at an absolute flow angle, α2, of 73°. The rotor blade tip
speed is 460 m/s and the relative velocity of the gas at rotor exit is twice the relative velocity at rotor
inlet. The rotor mean exit diameter is 45% of the rotor inlet diameter. Determine,

(i) the exit velocity from the rotor;
(ii) the static temperature difference, T2 – T3, of the flow between nozzle exit and rotor exit.

Assume the turbine operates at the nominal design condition and that Cp ¼ 1.33 kJ/kgK.

10. The initial design of an IFR turbine is to be based upon Whitfield’s procedure for optimum effi-
ciency. The turbine is to be supplied with 2.2 kg/s of air, a stagnation pressure of 250 kPa, a stag-
nation temperature of 800°C, and have an output power of 450 kW. At turbine exit the static
pressure is 105 kPA. Assuming for air that γ ¼ 1.33 and R ¼ 287 J/kgK, determine the value
of Whitfield’s power ratio, S, and the total-to-static efficiency of the turbine.

11. By considering the theoretical details of Whitfield’s design problem for obtaining the optimum
efficiency of an IFR turbine show that the correct choice for the relationship of the rotor inlet
flow angles is obtained from the following equation,

tan α2 ¼ sin β2
1� cos β2

.

and that a minimum stagnation Mach number at rotor inlet is obtained from:

M2
02 ¼

S

γ� 1

� �
2 cos β2

1þ cos β2
.
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12. An IFR turbine rotor is designed with 13 vanes and is expected to produce 400 kW from a supply
of gas heated to a stagnation temperature of 1100K at a flow rate of 1.2 kg/s. Using Whitfield’s
optimum efficiency design method and assuming ηts ¼ 0.85, determine

(i) the overall stagnation pressure to static pressure ratio;
(ii) the rotor tip speed and inlet Mach number, M2, of the flow.

Assume Cp ¼ 1.187 kJ/kg K and γ ¼ 1.33.

13. Another IFR turbine is to be built to develop 250 kW of shaft power from a gas flow of 1.1 kg/s.
The inlet stagnation temperature, T01, is 1050 K, the number of rotor blades is 13, and the outlet
static pressure, p3, is 102 kPa. At rotor exit the area ratio, ν ¼ r3h/r3s ¼ 0.4, and the velocity
ratio, cm3/U2 ¼ 0.25. The shroud to rotor inlet radius, r3s/r2, is 0.4. Using the optimum efficiency
design method, determine

(i) the power ratio, S, and the relative and absolute flow angles at rotor inlet;
(ii) the rotor blade tip speed;
(iii) the static temperature at rotor exit;
(iv) the rotor speed of rotation and rotor diameter.

Evaluate the specific speed, Ωs. How does this value compare with the optimum value of specific
speed determined in Figure 8.15?

14. Using the same input design data for the IFR turbine given in Problem 5 and given that the total-
to-static efficiency is 0.8, determine

(i) the stagnation pressure of the gas at inlet;
(ii) the total-to-total efficiency of the turbine.

15. An IFR turbine is required with a power output of 300 kW driven by a supply of gas at a stagna-
tion pressure of 222 kPa, at a stagnation temperature of 1100 K, and at a flow rate of 1.5 kg/s.
The turbine selected by the engineer has 13 vanes and preliminary tests indicate it should have a
total-to-static efficiency of 0.86. Based upon the optimum efficiency design method sketch the
appropriate velocity diagrams for the turbine and determine

(i) the absolute and relative flow angles at rotor inlet;
(ii) the overall pressure ratio;
(iii) the rotor tip speed.

16. For the IFR turbine of the previous problem the following additional information is made available:

cm3=U2 ¼ 0:25,w3=w2 ¼ 2:0, r3s=r2 ¼ 0:7 and ν ¼ 0:4:

Again, based upon the optimum efficiency design criterion, determine,

(i) the rotor diameter and speed of rotation;
(ii) the enthalpy loss coefficients of the rotor and the nozzles given that the nozzle loss coef-

ficient is (estimated) to be one quarter of the rotor loss coefficient.
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CHAPTER

Hydraulic Turbines 9
Hear ye not the hum of mighty workings?

John Keats, Sonnet No. 14
The power of water has changed more in this world than emperors or kings.

Leonardo da Vinci

9.1 INTRODUCTION
To put this chapter into perspective some idea of the scale of hydropower development in the world
might be useful before delving into the intricacies of hydraulic turbines. A very detailed and author-
itative account of virtually every aspect of hydropower is given by Raabe (1985) and this brief intro-
duction serves merely to illustrate a few aspects of a very extensive subject.

Hydropower is the longest established source for the generation of electric power, which, starting in
1880 as a small dc generating plant in Wisconsin, United States, developed into an industrial size plant
following the demonstration of the economic transmission of high voltage ac at the Frankfurt Exhibi-
tion in 1891. Hydropower was expected to have a worldwide yearly growth rate of about 5% (i.e., dou-
bling in size every 15 years) but this rate has now proved to be too optimistic. In 1980 the worldwide
installed generating capacity was 460 GW according to the United Nations (1981) but in 2007 the
figure was just exceeding 700 GW. This works out at roughly 1.6% annual yearly growth. The smaller
growth rate must, primarily, be due to the high costs involved in the civil engineering work, the cost of
the power and related electrical plant, and to some extent the human cost due to massive population
displacements with necessary new building.

According to the Environmental Resources Group Ltd., in 2007 hydropower constituted about 21%
of the world’s electrical generating capacity. The theoretical potential of hydropower is believed to be
2800 GW. The main areas with potential for growth are China, Latin America, and Africa.

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of harnessed and harness-
able potential of some of the countries with the biggest usable potential of hydropower. From this list it
is seen that the People’s Republic of China (PRC), the country with the largest harnessable potential
in the world had, in 1974, harnessed only 4.22% of this. However, the Three Gorges Dam project on
the Yangtse River, is now the biggest hydropower plant in the world. It contains 32 Francis turbines

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
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each capable of generating 700 MW, and in 2011, when all of the plant is fully operational, the total
generating capacity will be 22,500 MW.

Tidal Power
This relatively new and very promising technology, in which tidal stream generators are used to gen-
erate power, is still under active development. Very large amounts of energy can be obtained by this
means and, unlike wind power and solar power, it is available at known times each day. The most effi-
cient type of generator is still to be determined. The world’s first commercial tidal stream generator,
SeaGen, was installed in 2008 at Strangford Lough, Northern Ireland. The prototype version comprises
two 600 kW axial-flow turbines, 16 m in diameter. Further details on this tidal turbine are given
towards the end of this chapter.

Wave Power
Several energy conversion systems have now been developed for obtaining electrical power from
sea waves. One notable example is theWells turbine, which uses an oscillating water column generated
by the waves to drive this special type of axial-flow turbine. Several of these turbines have been
installed (in Scotland and India) and details of their rather special fluid mechanical design are given
in this chapter.

Features of Hydropower Plants
The initial cost of hydropower plants may be much higher than those of thermal power plants. How-
ever, the present value of total costs (which includes those of fuel) is, in general, lower in hydropower
plants. Raabe (1985) listed the various advantages and disadvantages of hydropower plants and a brief
summary of these is given in Table 9.2.

Table 9.1 Distribution of Harnessed and Harnessable Potential of Hydroelectric Power

Country Usable Potential, TWh
Amount of Potential
Used, TWh

Percentage of Usable
Potential

1 China (PRC) 1320 55.6 4.22

2 Former USSR 1095 180 16.45

3 USA 701.5 277.7 39.6

4 Zaire 660 4.3 0.65

5 Canada 535.2 251 46.9

6 Brazil 519.3 126.9 24.45

7 Malaysia 320 1.25 0.39

8 Columbia 300 13.8 4.6

9 India 280 46.87 16.7

Sum 1–9 5731 907.4 15.83

Other countries 4071 843 20.7

Total 9802.4 1750.5 17.8
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9.2 HYDRAULIC TURBINES
Early History of Hydraulic Turbines
The hydraulic turbine has a long period of development, its oldest and simplest form being
the waterwheel, first used in ancient Greece and subsequently adopted throughout medieval Europe
for the grinding of grain, etc. A French engineer, Benoit Fourneyron, developed the first commercially
successful hydraulic turbine (circa 1830). Later Fourneyron built turbines for industrial purposes that
achieved a speed of 2300 rev/min, developing about 50 kW at an efficiency of over 80%.

The American engineer James B. Francis designed the first radial-inflow hydraulic turbine that
became widely used, gave excellent results, and was highly regarded. In its original form it was used
for heads of between 10 and 100 m. A simplified form of this turbine is shown in Figure 1.1(d) in
Chapter 1. It will be observed that the flow path followed is essentially from a radial direction to an
axial direction.

The Pelton wheel turbine, named after its American inventor, Lester A. Pelton, was brought into use
in the second half of the nineteenth century. This is an impulse turbine in which water is piped at high
pressure to a nozzle where it expands completely to atmospheric pressure. The emerging jet impacts onto
the blades (or buckets) of the turbine, which produce the required torque and power output. A simplified
diagram of a Pelton wheel turbine is shown in Figure 1.1(f). The head of water used originally was
between about 90 and 900 m (modern versions operate up to heads of nearly 2000 m).

The increasing need for more power during the early years of the twentieth century also led to
the invention of a turbine suitable for small heads of water, i.e., 3 to 9 m, in river locations where a
dam could be built. In 1913 Viktor Kaplan revealed his idea of the propeller (or Kaplan) turbine, see
Figure 1.1(e), which acts like a ship’s propeller but in reverse. At a later date Kaplan improved his
turbine by means of swiveling blades, which improved the efficiency of the turbine appropriate to
the available flow rate and head.

Flow Regimes for Maximum Efficiency
The efficiency of a hydraulic turbine can be defined as the work developed by the rotor in unit time
divided by the difference in hydraulic energy between inlet and outlet of the turbine in unit time. The

Table 9.2 Features of Hydroelectric Power Plants

Advantages Disadvantages

Technology is relatively simple and proven. High
efficiency. Long useful life. No thermal phenomena
apart from those in bearings and generator.

Number of favourable sites limited and available only
in some countries. Problems with cavitation and
water hammer.

Small operating, maintenance, and replacement
costs.

High initial cost especially for low head plants
compared with thermal power plants.

No air pollution. No thermal pollution of water. Inundation of the reservoirs and displacement of
the population. Loss of arable land. Facilitates
sedimentation upstream and erosion downstream
of a barrage.
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efficiencies of the three principal types of hydraulic turbine just mentioned are shown in Figure 9.1 as
functions of the power specific speed, Ωsp. From eqn. (2.15b), this is

Ωsp ¼ Ω
ffiffiffiffiffiffiffiffi
P=ρ

p
ðgHEÞ

5
4

, ð9:1Þ

where P is the power delivered by the shaft, ρ is the density of water, HE is the effective head at turbine
entry, and Ω is the rotational speed in radians per second. It is remarkable that the efficiency of the
multi-stage Pelton turbine has now reached 92.5% at Ωsp @ 0.2 and that the Francis turbine can achieve
an efficiency of 95 to 96% at an Ωsp @ 1.0 to 2.0.

The Ωsp regimes of these turbine types are of considerable importance to the designer as they indi-
cate the most suitable choice of machine for an application. In general, low specific speed machines
correspond to low volume flow rates and high heads, whereas high specific speed machines correspond
to high volume flow rates and low heads. Table 9.3 summarises the normal operating ranges for the
specific speed, the effective head, the maximum power and best efficiency for each type of turbine.
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FIGURE 9.1

Typical Design Point Efficiencies of Pelton, Francis, and Kaplan Turbines

Table 9.3 Operating Ranges of Hydraulic Turbines

Pelton Turbine Francis Turbine Kaplan Turbine

Specific speed (rad) 0.05–0.4 0.4–2.2 1.8–5.0

Head (m) 100–1770 20–900 6–70

Maximum power (MW) 500 800 300

Optimum efficiency (%) 90 95 94

Regulation method Needle valve and
deflector plate

Stagger angle of
guide vanes

Stagger angle of rotor
blades

Note: Values shown in the table are only a rough guide and are subject to change.
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According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges of the various
types of turbines and turbine pumps (including some not mentioned here) are plotted in Figure 9.2 on a
ln Q versus ln HE diagram and reflect the present state of the art of hydraulic turbomachinery design.
Also in Figure 9.2 lines of constant power output are conveniently shown and have been calculated as
the product ηρgQHE where the efficiency η is given the value of 0.8 throughout the chart.

Capacity of Large Francis Turbines
The size and capacity of some of the recently built Francis turbines is a source of wonder, they seem so
enormous! The size and weight of the runners cause special problems getting them to the site, espe-
cially when rivers have to be crossed and the bridges are inadequate.

The largest installation in North America (circa 1998) is at La Grande on James Bay in eastern
Canada where 22 units each rated at 333 MW have a total capacity of 7326 MW. A close competitor
with the Three Gorges project is the Itaipu hydroelectric plant on the Paraná river (between Brazil and
Paraguay), which has a capacity of 12,600 MW in full operation using 18 Francis turbines each sized at
700 MW.
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Application Ranges for Various Types of Hydraulic Turbomachines, as a plot of Q versus H with Lines of Constant
Power Determined Assuming η0 = 0.8 (Courtesy Sulzer Hydro Ltd., Zurich)
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The efficiency of large Francis turbines has gradually risen over the years and now is about 95%.
There seems to be little prospect of much further improvement in efficiency as computable values of
losses due to skin friction, tip leakage, and exit kinetic energy from the diffuser are reckoned to account
for the remaining 5%. Raabe (1985) has given much attention to the statistics of the world’s biggest
turbines. It would appear at the present time that the largest hydroturbines in the world are the three
vertical shaft Francis turbines installed at Grand Coulee III on the Columbia River, Washington, United
States. Each of these leviathans has been uprated to 800 MW, with the delivery (or effective) head,
HE ¼ 87 m, N ¼ 85.7 rev/min, the runner having a diameter of D ¼ 9.26 m and weighing 450 ton.
Using this data in eqn. (9.1) it is easy to calculate that the power specific speed Ωsp ¼ 1.74 rad.

9.3 THE PELTON TURBINE
This is the only hydraulic turbine of the impulse type now in common use. It is an efficient machine
and it is particularly suited to high head applications. The rotor consists of a circular disc with a number
of blades (usually called buckets) spaced around the periphery. One or more nozzles are mounted in
such a way that each nozzle directs its jet along a tangent to the circle through the centres of the
buckets. A “splitter” or ridge splits the oncoming jet into two equal streams so that, after flowing
round the inner surface of the bucket, the two streams depart from the bucket in a direction nearly
opposite to that of the incoming jet.

Figure 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six-jet vertical axis Pelton
turbine. Considering one jet impinging on a bucket, the appropriate velocity diagram is shown in
Figure 9.5. The jet velocity at entry is c1 and the blade speed is U so that the relative velocity at
entry is w1 ¼ c1 � U. At exit from the bucket one half of the jet stream flows as shown in the velocity
diagram, leaving with a relative velocity w2 and at an angle β2 to the original direction of flow. From
the velocity diagram the much smaller absolute exit velocity c2 can be determined.

From Euler’s turbine equation, eqn. (1.18c), the specific work done by the water is

ΔW ¼ U1cθ1 �U2cθ2.

For the Pelton turbine, U1 ¼ U2 ¼ U, cθ1 ¼ c1 so we get

ΔW ¼ U U þ w1 �ðU þ w2 cos β2Þ� ¼ Uðw1 �w2 cos β2Þ,½

in which the value of cθ2 < 0, as defined in Figure 9.5, i.e., cθ2 ¼ U þ w2 cos β2.
The effect of friction on the fluid flowing inside the bucket will cause the relative velocity at outlet

to be less than the value at inlet. Writing w2 ¼ kw1, where k < 1,

ΔW ¼ Uw1ð1� k cos β2Þ ¼ Uðc1 �UÞð1� k cos β2Þ. ð9:2Þ

An efficiency ηR for the runner can be defined as the specific work done ΔW divided by the incoming
kinetic energy, i.e.,

ηR ¼ ΔW
1
2
c21

� �
¼ 2Uðc1 �UÞð1� k cos β2Þ=c21.

�
ð9:3Þ
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Therefore,

ηR ¼ 2νð1� νÞð1� k cos β2Þ, ð9:4Þ
where the blade speed to jet speed ratio, v ¼ U/c1.

To find the optimum efficiency, differentiate eqn. (9.4) with respect to the blade speed ratio, i.e.,

dηR
dν

¼ 2
d
dν

ðν� ν2Þð1� k cos β2Þ ¼ 2ð1� 2νÞð1� k cos β2Þ ¼ 0.

Therefore, the maximum efficiency of the runner occurs when ν ¼ 0.5, i.e., U ¼ c1/2. Hence,

ηR max ¼ ð1� k cos β2Þ. ð9:5Þ

FIGURE 9.3

Pelton Turbine Runner (Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.4

Six-Jet Vertical Shaft Pelton Turbine, Horizontal Section; Power Rating 174.4 MW, Runner Diameter 4.1 m,
Speed 300 rev/min, Head 587 m (Courtesy Sulzer Hydro Ltd., Zurich)
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FIGURE 9.5

The Pelton Wheel Showing the Jet Impinging onto a Bucket and the Relative and Absolute Velocities of the Flow
(Only One Half of the Emergent Velocity Diagram Is Shown)
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Figure 9.6 shows the theoretical variation of the runner efficiency with blade speed ratio for assumed
values of k ¼ 0.8, 0.9, and 1.0 with β2 ¼ 165°. In practice the value of k is usually found to be between
0.8 and 0.9.

A Simple Hydroelectric Scheme
The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The water is delivered from
a constant level reservoir at an elevation zR (above sea level) and flows via a pressure tunnel to the
penstock head, down the penstock to the turbine nozzles emerging onto the buckets as a high speed
jet. To reduce the deleterious effects of large pressure surges, a surge tank is connected to the flow
close to the penstock head, which acts so as to damp out transients. The elevation of the nozzles is
zN and the gross head, HG ¼ zR� zN.

Controlling the Speed of the Pelton Turbine
The Pelton turbine is usually directly coupled to an electrical generator that must run at synchronous
speed. With large size hydroelectric schemes supplying electricity to a national grid it is essential for
both the voltage and the frequency to closely match the grid values. To ensure that the turbine runs at
constant speed despite any load changes that may occur, the rate of flow Q is changed. A spear (or
needle) valve, Figure 9.8(a), whose position is controlled by means of a servomechanism, is moved
axially within the nozzle to alter the diameter of the jet. This works well for very gradual changes
in load. However, when a sudden loss in load occurs a more rapid response is needed. This is accom-
plished by temporarily deflecting the jet with a deflector plate so that some of the water does not reach
the buckets, Figure 9.8(b). This acts to prevent over-speeding and allows time for the slower acting
spear valve to move to a new position.
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Theoretical Variation of Runner Efficiency for a Pelton Wheel with a Blade Speed–Jet Speed Ratio for several
Values of Friction Factor k
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FIGURE 9.7

Pelton Turbine Hydroelectric Scheme
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FIGURE 9.8

Methods of Regulating the Speed of a Pelton Turbine: (a) with a Spear (or Needle) Valve; (b) with a Deflector
Plate
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It is vital to ensure that the spear valve does move slowly as a sudden reduction in the rate of flow
could result in serious damage to the system from pressure surges (called water hammer). If the spear
valve did close quickly, all the kinetic energy of the water in the penstock would be absorbed by the
elasticity of the supply pipeline (penstock) and the water, creating very large stresses, which would
reach their greatest intensity at the turbine inlet where the pipeline is already heavily stressed. The
surge chamber, shown in Figure 9.7, has the function of absorbing and dissipating some of the pressure
and energy fluctuations created by too rapid a closure of the needle valve.

Sizing the Penstock
It is shown in elementary textbooks on fluid mechanics, e.g., Shames (1992) and Douglas, Gasiorek,
and Swaffield (1995), that the loss in head with incompressible, steady, turbulent flow in pipes of
circular cross-section is given by Darcy’s equation:

Hf ¼ 2 f lV2

gd
, ð9:6Þ

where f is the friction factor, l is the length of the pipe, d is the pipe diameter, and V is the mass average
velocity of the flow in the pipe. It is assumed, of course, that the pipe is running full. The value of the
friction factor has been determined for various conditions of flow and pipe surface roughness and the
results are usually presented in what is called a Moody diagram. This diagram gives values of f as a
function of pipe Reynolds number for varying levels of relative roughness of the pipe wall.

The penstock (the pipeline bringing the water to the turbine) is long and of large diameter and this
can add significantly to the total cost of a hydroelectric power scheme. Using Darcy’s equation it is
easy to calculate a suitable pipe diameter for such a scheme if the friction factor is known and an esti-
mate can be made of the allowable head loss. Logically, this head loss would be determined on the
basis of the cost of materials etc., needed for a large diameter pipe and compared with the value of
the useful energy lost from having too small a pipe. A commonly used compromise for the loss in
head in the supply pipes is to allow Hf � 0.1 HG.

From eqn. (9.6), substituting for the velocity, V ¼ 4Q/(πd2), we get

Hf ¼ 32 fl
π2 g

� �
Q2

d5
. ð9:7Þ

EXAMPLE 9.1
Water is supplied to a turbine at the rate Q ¼ 2.272 m3/s by a single penstock 300 m long. The allowable head loss
due to friction in the pipe amounts to 20 m. Determine the diameter of the pipe if the friction factor f ¼ 0.01.

Solution
Rearranging eqn. (9.7)

d5 ¼ 32 f l

gHf

Q

π

� �2
¼ 32� 0:01� 300

9:81� 20
2:272
π

� �2
¼ 0:2559.

Therefore, d ¼ 0.7614 m.
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Energy Losses in the Pelton Turbine
Having accounted for the energy loss due to friction in the penstock, the energy losses in the rest of the
hydroelectric scheme must now be considered. The effective head, HE (or delivered head), at entry to
the turbine is the gross head minus the friction head loss, Hf, i.e.,

HE ¼ HG �Hf ¼ zR � zN �Hf

and the spouting (or ideal) velocity, co, is

co ¼
ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
.

The pipeline friction loss Hf is regarded as an external loss and is not usually included in the losses
attributed to the turbine itself. The performance and efficiency of the turbine are, in effect, measured
against the total head, HE, as shown in the following.

The main energy losses of the turbine occur in

(i) the nozzles due to fluid friction;
(ii) converting the kinetic energy of the jet into mechanical energy of the runner;
(iii) external effects (bearing friction and windage).

Each of these energy losses are now considered in turn.
For item (i) let the loss in head in the nozzles be ΔHN. Thus, the available head is

HE �ΔHN ¼ c21=ð2gÞ, ð9:8Þ
where c1 is the actual velocity of the jet at nozzle exit. The nozzle efficiency is defined by

ηN ¼ energy at nozzle exit
energy at nozzle inlet

¼ c21
2 gHE

. ð9:9aÞ

This efficiency is usually very close to 100% as the flow is accelerating through the nozzle. An often-
used alternative to ηN is the nozzle velocity coefficient KN defined by

KN ¼ actual velocity at nozzle exit
spouting velocity

¼ c1
c0

,

i.e.,

ηN ¼ K2
N ¼ c21

c20
. ð9:9bÞ

For item (ii) the loss in energy is already described in eqn. (9.2) and the runner efficiency ηR by
eqns. (9.3) and (9.4). The turbine hydraulic efficiency ηh is defined as the specific work done by
the rotor, ΔW, divided by the specific energy available at entry to the nozzle, gHE, i.e.,

ηh ¼
ΔW
gHE

¼ ΔW
1
2 c

2
1

 !
1
2 c

2
1

gHE

� �
¼ ηRηN , ð9:10Þ

after using eqn. (9.9a).
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For item (iii) the external losses are responsible for the energy deficit between the runner and the
shaft. A good estimate of these losses can be made using the following simple flow model where the
specific energy loss is assumed to be proportional to the square of the blade speed, i.e.,

external loss=unit mass flow ¼ KU2,

where K is a dimensionless constant of proportionality. Thus, the shaft work done/unit mass flow is

ΔW �KU2.

Therefore, the overall efficiency of the turbine, ηo, including these external losses is

ηo ¼ ðΔW �KU2Þ=ðgHeÞ,
i.e., the shaft work delivered by the turbine/specific energy available at nozzle entry, which

¼ ηRηN � 2K
U

c1

� �2 c21
2 gHE

� �
.

Using the definitions of the blade speed–jet speed ratio, ν ¼ U/c1, and the nozzle efficiency,
ηN ¼ c21=c

2
2,

η0 ¼ ηNðηR � 2Kν2Þ ¼ ηmηRηN , ð9:11Þ
where the mechanical efficiency, ηm ¼ 1� external losses/gHE, i.e.,

ηm ¼ 1� 2Kν2=ηR. ð9:12Þ
The variation of the overall efficiency as given by eqn. (9.11) is shown in Figure 9.9 as a function

of ν for several values of the windage coefficient K. It will be noticed that peak efficiency reduces as
the value of K is increased and that it occurs at lower values of ν than the optimum for the runner. This
evaluation of the theoretical performance of a Pelton turbine gives a possible reason for the often puz-
zling result given when experiments are evaluated and that always yield a peak efficiency for values of
ν < 0.5.
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FIGURE 9.9

Variation of Overall Efficiency of a Pelton Turbine with Speed Ratio for Several Values of Windage Coefficient, K
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By differentiating eqn. (9.11) it can be shown that the optimum value of ν occurs when

νopt ¼ A

2ðAþ KÞ .

where A ¼ 1� k cos β2.

Exercise
Let k ¼ 0.9, β2 ¼ 165°, and K ¼ 0.1. Hence, A ¼ 1.869 and ν ¼ 0.475.

Typical performance of a Pelton turbine under conditions of constant head and speed is shown in
Figure 9.10 in the form of the variation of overall efficiency against load ratio. As a result of a change
in the load the output of the turbine must then be regulated by a change in the setting of the needle
valve to keep the turbine speed constant. The observed almost constant value of the efficiency over
most of the load range is the result of the hydraulic losses reducing in proportion to the power output.
However, as the load ratio is reduced to even lower values, the windage and bearing friction losses,
which have not diminished, assume a relatively greater importance and the overall efficiency rapidly
diminishes towards zero.

EXAMPLE 9.2
A Pelton turbine is driven by two jets, generating 4.0 MW at 375 rev/min. The effective head at the nozzles is 200 m
of water and the nozzle velocity coefficient, KN ¼ 0.98. The axes of the jets are tangent to a circle 1.5 m in diameter.
The relative velocity of the flow across the buckets is decreased by 15% and the water is deflected through an angle
of 165°.

Neglecting bearing and windage losses, determine

(i) the runner efficiency;
(ii) the diameter of each jet;
(iii) the power specific speed.

1000

100

�
0,

 %

Load ratio, %

FIGURE 9.10

Pelton Turbine Overall Efficiency Variation with Load Under Constant Head and Constant Speed Conditions
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Solution
(i) The blade speed is

U ¼ Ωr ¼ ð375� π=30Þ� 1:5=2 ¼ 39:27� 1:5=2 ¼ 29:45 m=s.

The jet speed is

c1 ¼ KN

ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
¼ 0:98�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 9:81� 200

p
¼ 61:39 m=s.

Therefore, ν ¼ U/c1 ¼ 0.4798.
The efficiency of the runner is obtained from eqn. (9.4):

ηR ¼ 2� 0:4798�ð1� 0:4798Þð1� 0:85� cos 165�Þ ¼ 0:9090.

(ii) The “theoretical” power is Pth ¼ P/ηR ¼ 4.0/0.909 ¼ 4.40 MW, where Pth ¼ ρgQHE. Therefore,

Q ¼ Pth=ð ρgHEÞ ¼ 4:4� 106=ð9810� 200Þ ¼ 2:243 m3=s.

Each jet must have a flow area of

Aj ¼ Q

2c1
¼ 2:243=ð2� 61:39Þ ¼ 0:01827 m2.

Therefore, dj ¼ 0.5125 m.
(iii) Substituting into eqn. (9.1), the power specific speed is

Ωsp ¼ 39:27� 4:0� 106

103

� �1
2

ð9:81� 200Þ54 ¼ 0:190 rad.
.

9.4 REACTION TURBINES
The primary features of the reaction turbine are

(i) only part of the overall pressure drop has occurred up to turbine entry, the remaining pressure
drop takes place in the turbine itself;

(ii) the flow completely fills all of the passages in the runner, unlike the Pelton turbine where, for each
jet, only one or two of the buckets at a time are in contact with the water;

(iii) pivotable guide vanes are used to control and direct the flow;
(iv) a draft tube is normally added on to the turbine exit; this is considered as an integral part of the

turbine.

The pressure of the water gradually decreases as it flows through the runner and the reaction from this
pressure change earns this type of turbine its appellation.

9.5 THE FRANCIS TURBINE
The majority of Francis turbines are arranged so that the axis is vertical (some smaller machines can
have horizontal axes). Figure 9.11 illustrates a section through a vertical shaft Francis turbine with a
runner diameter of 5 m, a head of 110 m, and a power rating of nearly 200 MW. Water enters via a
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spiral casing called a volute or scroll that surrounds the runner. The area of cross-section of the volute
decreases along the flow path in such a way that the flow velocity remains constant. From the volute
the flow enters a ring of stationary guide vanes, which direct it onto the runner at the most appropriate
angle.

In flowing through the runner the angular momentum of the water is reduced and work is supplied
to the turbine shaft. At the design condition the absolute flow leaves the runner axially (although a
small amount of swirl may be countenanced) into the draft tube and, finally, the flow enters the tail-
race. It is essential that the exit of the draft tube is submerged below the level of the water in the tail-
race in order that the turbine remains full of water. The draft tube also acts as a diffuser; by careful
design it can ensure maximum recovery of energy through the turbine by significantly reducing the
exit kinetic energy.

Figure 9.12 shows the runner of a small Francis turbine and Figure 9.13 is a sectional view of the
turbine together with the velocity triangles at inlet to and exit from the runner at mid-blade height. At
inlet to the guide vanes the flow is in the radial/tangential plane, the absolute velocity is c1 and the
absolute flow angle is α1. Thus,

α1 ¼ tan�1ðcθ1=cr1Þ. ð9:13Þ

FIGURE 9.11

Vertical Shaft Francis Turbine: Runner Diameter 5 m, Head 110 m, Power 200 MW (Courtesy Sulzer Hydro Ltd.,
Zurich)
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The flow is turned to angle α2 and velocity c2, the absolute condition of the flow at entry to the runner.
By vector subtraction the relative velocity at entry to the runner is found, i.e., w2 ¼ c2 � U2. The rela-
tive flow angle β2 at inlet to the runner is defined as

β2 ¼ tan�1½ðcθ2 �U2Þ=cr2�. ð9:14Þ

Further inspection of the velocity diagrams in Figure 9.13 reveals that the direction of the velocity vec-
tors approaching both guide vanes and runner blades are tangential to the camber lines at the leading
edge of each row. This is the ideal flow condition for “shockless” low loss entry, although an incidence
of a few degrees may be beneficial to output without a significant extra loss penalty. At vane outlet
some deviation from the blade outlet angle is to be expected (see Chapter 3). For these reasons, in
all problems concerning the direction of flow, it is clear that the angle of the fluid flow is important
and not the vane angle as is often quoted in other texts.

At outlet from the runner the flow plane is simplified as though it were actually in the radial/
tangential plane. This simplification will not affect the subsequent analysis of the flow but it must
be conceded that some component of velocity in the axial direction does exist at runner outlet.

The water leaves the runner with a relative flow angle β3 and a relative flow velocity w3. The abso-
lute velocity at runner exit is found by vector addition, i.e., c3 ¼ w3 þ U3. The relative flow angle, β3,
at runner exit is given by

β3 ¼ tan �1 ½ðcθ3 þ U3Þ=cr3�. ð9:15Þ

FIGURE 9.12

Runner of a Small Francis Turbine (Permission Granted to Copy Under the Terms of the GNU Free Documenta-
tion License)
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In this equation it is assumed that some residual swirl velocity cθ3 is present (cr3 is the radial velocity at
exit from the runner). In most simple analyses of the Francis turbine it is assumed that there is no exit
swirl. Detailed investigations have shown that some extra counter-swirl (i.e., acting so as to increase
Δcθ) at the runner exit does increase the amount of work done by the fluid without a significant reduc-
tion in turbine efficiency.

When a Francis turbine is required to operate at part load, the power output is reduced by swivelling
the guide vanes to restrict the flow, i.e., Q is reduced, while the blade speed is maintained constant.
Figure 9.14 compares the velocity triangles at full load and at part load from which it will be seen
that the relative flow at runner entry is at a high incidence and at runner exit the absolute flow has
a large component of swirl. Both of these flow conditions give rise to high head losses. Figure 9.15
shows the variation of hydraulic efficiency for several types of turbine, including the Francis turbine,
over the full load range at constant speed and constant head.

It is of interest to note the effect that swirling flow has on the performance of the following diffuser.
The results of an extensive experimental investigation made by McDonald, Fox, and van Dewoestine
(1971) showed that swirling inlet flow does not affect the performance of conical diffusers, which are
well designed and give unseparated or only slightly separated flow when the flow through them is
entirely axial. Accordingly, part load operation of the turbine is unlikely to give adverse diffuser
performance.
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FIGURE 9.13

Sectional Sketch of Blading for a Francis Turbine Showing Velocity Diagrams at Runner Inlet and Exit
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Basic Equations
Euler’s turbine equation, eqn. (1.18c), in the present notation, is written as

ΔW ¼ U2cθ2 �U3cθ3. ð9:16aÞ
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FIGURE 9.14

Comparison of Velocity Triangles for a Francis Turbine at Full Load and at Part Load Operation
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FIGURE 9.15

Variation of Hydraulic Efficiency for Various Types of Turbine over a Range of Loading, at Constant Speed and
Constant Head
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If the flow at runner exit is without swirl then the equation reduces to

ΔW ¼ U2cθ2. ð9:16bÞ
The effective head for all reaction turbines, HE, is the total head available at the turbine inlet relative to
the surface of the tailrace. At entry to the runner the energy available is equal to the sum of the kinetic,
potential and pressure energies:

gðHE �ΔHNÞ¼ p2 � pa
ρ

þ 1
2
c22 þ gz2, ð9:17Þ

where ΔHN is the loss of head due to friction in the volute and guide vanes and p2 is the absolute static
pressure at inlet to the runner.

At runner outlet the energy in the water is further reduced by the amount of specific work ΔW and
by friction work in the runner, gΔHR and this remaining energy equals the sum of the pressure potential
and kinetic energies:

gðHE �ΔHN �ΔHRÞ�ΔW ¼ 1
2
c23 þ p3=ρ� pa=ρþ gz3, ð9:18Þ

where p3 is the absolute static pressure at runner exit.
By differencing eqns. (9.17) and (9.18), the specific work is obtained:

ΔW ¼ ðp02 � p03Þ=ρ� gΔHR þ gðz2 � z3Þ, ð9:19Þ
where p02 and p03 are the absolute total pressures at runner inlet and exit.

Figure 9.16 shows the draft tube in relation to a vertical-shaft Francis turbine. The most important
dimension in this diagram is the vertical distance (z ¼ z3) between the exit plane of the runner and the

c3

Z

Draft tube

c4

Tailwater

FIGURE 9.16

Location of Draft Tube in Relation to Vertical Shaft Francis Turbine
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free surface of the tailrace. The energy equation between the exit of the runner and the tailrace can now
be written as

p3=ρþ 1
2
c23 þ gz3 � gΔHDT ¼ 1

2
c24 þ pa=ρ, ð9:20Þ

where ΔHDT is the loss in head in the draft tube and c4 is the flow exit velocity.
The hydraulic efficiency is defined by

ηh ¼
ΔW
gHE

¼ U2cθ2 �U3cθ3
gHE

ð9:21aÞ

and, whenever cθ3 ¼ 0,

ηH ¼ U2cθ2
gHE

. ð9:21bÞ

The overall efficiency is given by ηo ¼ ηmηH. For very large turbines (e.g., 500–1000 MW) the
mechanical losses are then relatively small, η→ 100% and effectively ηo � ηH.

For the Francis turbine the ratio of the runner tip speed to the jet velocity, ν ¼ U2/c1, is not as cri-
tical for high efficiency operation as it is for the Pelton turbine and can lie in a fairly wide range, e.g.,
0.6 � ν � 0.95. In most applications the Francis turbine is used to drive a synchronous generator and
the rotational speeds chosen are those appropriate to either 50 or 60 cycles per second. The speed must
then be maintained constant.

It is possible to obtain part load operation of the turbine by varying the angle of the guide vanes.
The guide vanes are pivoted and set to an optimum angle via a gearing mechanism. However, part load
operation normally causes a whirl velocity to be set up in the flow downstream of the runner causing a
reduction in efficiency. The strength of the vortex may be enough to cause a cavitation bubble to form
along the axis of the draft tube. (See Section 9.8, Cavitation.)

EXAMPLE 9.3
In a vertical-shaft Francis turbine the available head at the inlet flange is 150 m of water and the vertical distance
between the runner and the tailrace is 2.0 m. The runner tip speed is 35 m/s, the meridional velocity of the water
through the runner is constant at 10.5 m/s, the flow leaves the runner without whirl and the velocity at exit from the
draft tube is 3.5 m/s.

The hydraulic losses for the turbine are as follows:

ΔHN ¼ 6:0 m, ΔHR ¼ 10 m, ΔHDT ¼ 1:0 m.

Determine

(i) the specific work, ΔW, and the hydraulic efficiency, ηh, of the turbine;
(ii) the absolute velocity, c2, at runner entry;
(iii) the pressure head (relative to the tailrace) at inlet to and exit from the runner;
(iv) the absolute and relative flow angles at runner inlet;
(v) if the flow discharged by the turbine is 20 m3/s and the power specific speed is 0.8 (rad), the speed of rotation

and diameter of the runner.
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Solution
From eqns. (9.18) and (9.20), we can find the specific work,

ΔW ¼ gðHE �ΔHN �ΔHR �ΔHDTÞ� 1
2
c24

¼ 9:81�ð150� 6� 10� 1Þ� 3:52=2 ¼ 1298:6 m2=s2.

The hydraulic efficiency, ηh ¼ ΔW/(gHE) ¼ 0.8825.
As cθ3 ¼ 0, then ΔW ¼ U2cθ2 and cθ2 ¼ ΔW/U2 ¼ 1298.6/35 ¼ 37.1 m/s, thus,

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ2 þ c2m

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
37:12 þ 10:52

p
¼ 38:56 m=s:

From eqn. (9.17) the pressure head at inlet to the runner is

H2 ¼ HE �ΔHN � c22=ð2gÞ ¼ 150� 6� 38:562=ð2� 9:81Þ ¼ 68:22 m:

Again, using eqn. (9.20), the pressure head (relative to the tailrace) at runner exit is

H3 ¼ ðp3 � paÞ=ðρgÞ ¼ ðc24 � c23Þ=ð2gÞ þ ΔHDT � z3 ¼ ð3:52 � 10:52Þ=ð2� 9:81Þ þ 1� 2 ¼ �6:0 m.

Note: The minus sign for H3 indicates that the pressure is below the atmospheric level. This is a matter of con-
siderable importance in the design and operation of hydraulic turbomachinery and is considered in further detail
under the heading Cavitation later in this chapter.

The flow angles at runner inlet are now obtained as follows:

α2¼ tan �1ðcθ2=cr2Þ ¼ tan�1ð37:1=10:5Þ ¼ 74:2�

β2 ¼ tan�1½ðcθ2 �U2Þ=cr2� ¼ tan�1½ð37:1� 35Þ=10:5� ¼ 11:31�.

From the definition of power specific speed, eqn. (9.1), and using P/ρ ¼ QΔW,

Ω ¼ ΩSPðgHEÞ
5
4ffiffiffiffiffiffiffiffiffiffiffi

QΔW
p ¼ 0:8� 9114ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20� 1298:7
p ¼ 45:24 rad=s:

Thus, the rotational speed N ¼ 432 rev/min and the runner diameter is

D2 ¼ 2U2=Ω ¼ 70=45:24 ¼ 1:547 m.

9.6 THE KAPLAN TURBINE
This type of turbine evolved from the need to generate power from much lower pressure heads than are
normally employed with the Francis turbine. To satisfy large power demands very large volume flow
rates need to be accommodated in the Kaplan turbine, i.e., the product QHE is large. The overall flow
configuration is from radial to axial. Figure 9.17(a) is a part sectional view of a Kaplan turbine in
which the flow enters from a volute into the inlet guide vanes, which impart a degree of swirl to
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the flow determined by the needs of the runner. The flow leaving the guide vanes is forced by the shape
of the passage into an axial direction and the swirl becomes essentially a free vortex, i.e.,

rcθ ¼ a constant:

The vanes of the runner are similar to those of an axial-flow turbine rotor but designed with a twist
suitable for the free-vortex flow at entry and an axial flow at outlet. A picture of a Kaplan (or propeller)
turbine runner is shown in Figure 9.17(b). Because of the very high torque that must be transmitted and
the large length of the blades, strength considerations impose the need for large blade chords. As a
result, pitch–chord ratios of 1.0 to 1.5 are commonly used by manufacturers and, consequently, the
number of blades is small, usually four, five, or six. The Kaplan turbine incorporates one essential fea-
ture not found in other turbine rotors and that is the setting of the stagger angle can be controlled. At
part load operation the setting angle of the runner vanes is adjusted automatically by a servomechanism
to maintain optimum efficiency conditions. This adjustment requires a complementary adjustment of
the inlet guide vane stagger angle to maintain an absolute axial flow at exit from the runner.

Basic Equations
Most of the equations presented for the Francis turbine also apply to the Kaplan (or propeller) turbine,
apart from the treatment of the runner. Figure 9.18 shows the velocity triangles and part section of a
Kaplan turbine drawn for the mid-blade height. At exit from the runner the flow is shown leaving the
runner without a whirl velocity, i.e., cθ3 ¼ 0 and constant axial velocity. The theory of free-vortex
flows was expounded in Chapter 6 and the main results as they apply to an incompressible fluid are
given here. The runner blades will have a fairly high degree of twist, the amount depending upon the

(b)(a)

FIGURE 9.17

(a) Part Section of a Kaplan Turbine in Situ; (b) Kaplan Turbine Runner (Courtesy Sulzer Hydro Ltd., Zurich)
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strength of the circulation function K and the magnitude of the axial velocity. Just upstream of the run-
ner the flow is assumed to be a free-vortex and the velocity components are accordingly

cθ2 ¼ K=r, cx ¼ a constant.

The relations for the flow angles are

tan β2 ¼ U=cx � tan α2 ¼ Ωr=cx �K=ðrcxÞ, ð9:22aÞ

tan β3 ¼ U=cx ¼ Ωr=cx: ð9:22bÞ

EXAMPLE 9.4
A small-scale Kaplan turbine has a power output of 8 MW, an available head at turbine entry of 13.4 m, and a
rotational speed of 200 rev/min. The inlet guide vanes have a length of 1.6 m and the diameter at the trailing
edge surface is 3.1 m. The runner diameter is 2.9 m and the hub–tip ratio is 0.4.

Assuming the hydraulic efficiency is 92% and the runner design is “free-vortex,” determine

(i) the radial and tangential components of velocity at exit from the guide vanes;
(ii) the component of axial velocity at the runner;
(iii) the absolute and relative flow angles upstream and downstream of the runner at the hub, mid-radius, and tip.

Solution
As P ¼ ηHρgQHE, then the volume flow rate is

Q ¼ P=ðηHρgHEÞ ¼ 8� 106=ð0:92� 9810� 13:4Þ ¼ 66:15 m=s2

1

2

3

Exit
flow

r1 �2

w2 c2

U

�2

Blade motion

�3

w3

U

c35 cx

FIGURE 9.18

Section of a Kaplan Turbine and Velocity Diagrams at Inlet to and Exit from the Runner
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Therefore,

cr1 ¼ Q=ð2πr1LÞ ¼ 66:15=ð2π� 1:55� 1:6Þ ¼ 4:245 m=s,

cx2 ¼ 4Q
πD2

2tð1� ν2Þ ¼ 4� 66:15=ðπ� 2:92 � 0:84Þ ¼ 11:922 m=s.

As the specific work done is ΔW = U2cθ2 and ηH ¼ ΔW/(gHE), then at the tip

cθ2 ¼ ηHgHE

U2
¼ 0:92� 9:81� 13:4

30:37
¼ 3:892 m=s,

where the blade tip speed is U2 ¼ ΩD2/2 ¼ (200 × π/30) × 2.9/2 ¼ 30.37 m/s,

cθ1 ¼ cθ2r2=r1 ¼ 3:892� 1:45=1:55 ¼ 3:725 m=s2,

α1 ¼ tan �1 cθ1
cr1

� �
¼ tan �1 3:725

4:245

� �
¼ 41:26�.

Values α2, β2 and β3 shown in Table 9.4 have been derived from the following relations:

α2 ¼ tan �1 cθ2
cx2

� �
¼ tan �1 cθ2t

cx2

rt
r

� �
,

β2 ¼ tan �1 Ωr
cx2

� tan α2

� �
¼ tan �1 U2t

cx2

r

rt
� tan α2

� �
,

β3 ¼ tan �1 U

cx2

� �
¼ tan �1 U2t

cx2

r

rt

� �
.

Finally, Figure 9.19 illustrates the variation of the flow angles, from which the large amount of blade twist
mentioned earlier can be inferred.

Table 9.4 Calculated Values of Flow Angles for Example 9.4

Ratio r/rt

Parameter 0.4 0.7 1.0

cθ2 (m/s) 9.955 5.687 3.982

tan α2 0.835 0.4772 0.334

α2 (deg) 39.86 25.51 18.47

U/cx2 1.019 1.7832 2.547

β2 (deg) 10.43 52.56 65.69

β3 (deg) 45.54 60.72 68.57
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9.7 EFFECT OF SIZE ON TURBOMACHINE EFFICIENCY
Despite careful attention to detail at the design stage and during manufacture it is a fact that small tur-
bomachines always have lower efficiencies than larger geometrically similar machines. The primary
reason for this is that it is not possible to establish perfect dynamical similarity between turbomachines
of different size. To obtain this condition, each of the dimensionless terms in eqns. (2.2) would need to
be the same for all sizes of a machine.

To illustrate this consider a family of turbomachines where the loading term, ψ ¼ gH/N2D2, is the
same and the Reynolds number, Re ¼ ND2/ν, is the same for every size of machine, then

ψRe2 ¼ gH

N2D2
� N2D4

ν2
¼ gHD2

ν2

must be the same for the whole family. Thus, for a given fluid (ν is a constant), a reduction in size D
must be followed by an increase in the head H. A turbine model of one eighth the size of a prototype
would need to be tested with a head 64 times that required by the prototype! Fortunately, the effect on
the model efficiency caused by changing the Reynolds number is not large. In practice, models are
normally tested at conveniently low heads and an empirical correction is applied to the efficiency.

With model testing other factors affect the results. Exact geometric similarity cannot be achieved
for the following reasons:

(i) the blades in the model will probably be thicker than in the prototype;
(ii) the relative surface roughness for the model blades will be greater;
(iii) leakage losses around the blade tips of the model will be relatively greater as a result of increased

relative tip clearances.

Various simple corrections have been devised (see Addison, 1964) to allow for the effects of size (or
scale) on the efficiency. One of the simplest and best known is that due to Moody and Zowski (1969),
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Calculated Variation of Flow Angles for Kaplan Turbine of Example 9.4
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also reported by Addison (1964) and Massey (1979), which as applied to the efficiency of reaction
turbines is

1� ηp
1� ηm

¼ Dm

Dp

� �n

, ð9:23Þ

where the subscripts p and m refer to prototype and model, and the index n is in the range 0.2 to 0.25.
From comparison of field tests of large units with model tests, Moody and Zowski concluded that the
best value for n was approximately 0.2 rather than 0.25 and for general application this is the value
used. However, Addison (1964) reported tests done on a full-scale Francis turbine and a model
made to a scale of 1 to 4.54 that gave measured values of the maximum efficiencies of 0.85 and
0.90 for the model and full-scale turbines, respectively, which agreed very well with the ratio computed
with n ¼ 0.25 in the Moody formula!

EXAMPLE 9.5
A model of a Francis turbine is built to a scale of one fifth of full size and when tested it developed a power output
of 3 kW under a head of 1.8 m of water, at a rotational speed of 360 rev/min and a flow rate of 0.215 m3/s. Esti-
mate the speed, flow rate, and power of the full-scale turbine when working under dynamically similar conditions
with a head of 60 m of water.

By making a suitable correction for scale effects, determine the efficiency and the power of the full-size tur-
bine. Use Moody’s formula and assume n ¼ 0.25.

Solution
From the group ψ ¼ gH/(ND)2 we get

Np ¼ NmðDm=DpÞðHp=HmÞ0:5 ¼ ð360=5Þð60=1:8Þ0:5 ¼ 415:7 rev=min.

From the group � ¼ Q/(ND3) we get

Qp ¼ QmðNp=NmÞðDp=DmÞ3 ¼ 0:215�ð415:7=360Þ� 53 ¼ 31:03 m3=s.

Lastly, from the group P̂ ¼ P=ðρN3D3Þ we get

Pp ¼ PmðNp=NmÞ3ðDp=DmÞ5 ¼ 3�ð415:7Þ3 � 55 ¼ 14; 430 kW ¼ 14:43 MW.

This result has still to be corrected to allow for scale effects. First we must calculate the efficiency of the model
turbine. The efficiency is found from

ηm ¼ P=ðρQgHÞ ¼ 3� 103=ð103 � 0:215� 9:81� 1:8Þ ¼ 0:79.

Using Moody’s formula the efficiency of the prototype is determined:

ð1� ηpÞ ¼ ð1� ηmÞ� 0:20:25 ¼ 0:21� 0:6687,

hence,

ηp ¼ 0:8596.
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The corresponding power is found by an adjustment of the original power obtained under dynamically similar
conditions, i.e.,

correctedPp ¼ 14:43� 0:8596=0:79 ¼ 15:7 MW.

9.8 CAVITATION
A description of the phenomenon of cavitation with regard to pumps was given in Chapter 7. In
hydraulic turbines, where reliability, long life, and efficiency are all very important, the effects of cavi-
tation must be considered. Two types of cavitation may be in evidence:

(i) on the suction surfaces of the runner blades at outlet that can cause severe blade erosion;
(ii) a twisting “rope type” cavity that appears in the draft tube at off-design operating conditions.

Cavitation in hydraulic turbines can occur on the suction surfaces of the runner blades where the dynamic
action of the blades acting on the fluid creates low pressure zones in a region where the static pressure is
already low. Hydraulic turbines are designed to run for many years with very little maintenance. However,
if cavitation does occur then pitting of the surfaces, fatigue cracking, and partial collapse of the blades will
reduce performance. Figure 9.20 shows extensive damage due to cavitation of a Francis runner.

Cavitation will commence when the local static pressure is less than the vapour pressure of the water,
i.e., where the head is low, the velocity is high and the elevation, z, of the turbine is set too high above
the tailrace. For a turbine with a horizontal shaft the lowest pressure will be located in the upper part of
the runner, which could be of major significance in large machines. Fortunately, the runners of

FIGURE 9.20

Cavitation Damage to the Blades of a Francis Turbine (Permission Granted to Copy Under the Terms of the GNU
Free Documentation License)
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large machines are, in general, made so that their shafts are orientated vertically, lessening the problem
of cavitation occurrence.

The cavitation performance of hydraulic turbines can be correlated with the Thoma coefficient, σ,
defined as

σ ¼ HS

HE
¼ ðpa � pυÞ=ðρgÞ� z

HE
, ð9:24Þ

where HS is the net positive suction head (NPSH), the amount of head needed to avoid cavitation, the
difference in elevation, z, is defined in Figure 9.16 and pv is the vapour pressure of the water. The
Thoma coefficient was, strictly, originally defined in connection with cavitation in turbines and its
use in pumps is not appropriate (see Yedidiah, 1981). It is to be shown that σ represents the fraction
of the available head HE, which is unavailable for the production of work. A large value of σ means
that a smaller part of the available head can be utilised. In a pump, incidentally, there is no direct con-
nection between the developed head and its suction capabilities, provided that cavitation does not
occur, which is why the use of the Thoma coefficient is not appropriate for pumps.

From the energy equation, eqn. (9.20), this can be rewritten as

pa � p3
ρg

� z ¼ 1
2g

ðc23 � c24Þ�ΔHDT , ð9:25Þ

so that when p3 ¼ pv, then HS is equal to the right-hand side of eqn. (9.24).
Figure 9.21 shows a widely used correlation of the Thoma coefficient plotted against specific speed

for Francis and Kaplan turbines, approximately defining the boundary between no cavitation and severe
cavitation. In fact, there exists a wide range of critical values of σ for each value of specific speed and type
of turbine due to the individual cavitation characteristics of the various runner designs. The curves drawn
are meant to assist preliminary selection procedures. An alternative method for avoiding cavitation is to
perform tests on a model of a particular turbine in which the value of p3 is reduced until cavitation occurs
or a marked decrease in efficiency becomes apparent. This performance reduction would correspond to
the production of large-scale cavitation bubbles. The pressure at which cavitation erosion occurs will
actually be at some higher value than that at which the performance reduction starts.

For the centre-line cavitation that appears downstream of the runner at off-design operating condi-
tions, oscillations of the cavity can cause severe vibration of the draft tube. Young (1989) reported
some results of a “corkscrew” cavity rotating at 4 Hz. Air injected into the flow both stabilizes the
flow and cushions the vibration.

EXAMPLE 9.6
Using the data in Example 9.3 and given that the atmospheric pressure is 1.013 bar and the water is at 25°C, deter-
mine the NPSH for the turbine. Hence, using Thoma’s coefficient and the data shown in Figure 9.19, determine
whether cavitation is likely to occur. Verify the result using the result given in eqn. (2.23b).

Solution
From tables of fluid properties, e.g., Rogers and Mayhew (1995), or using the data of Figure 9.22, the vapour
pressure for water corresponding to a temperature of 25°C is 0.03166 bar. From the definition of NPSH,
eqn. (9.24), we obtain
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Hs ¼ pa � pv
ρg

� z ¼ ð1:013� 0:03166Þ� 105=ð9810Þ� 2 ¼ 8:003 m.

Thus, Thoma’s coefficient is, σ ¼ HS/HE ¼ 8.003/150 ¼ 0.05336.
At the value of ΩSP ¼ 0.8 given as data, the value of the critical Thoma coefficient σc corresponding to this is

0.09 from Figure 9.21. From the fact that σ < σc, then the turbine will cavitate.
From the definition of the suction specific speed,

ΩSS ¼ ΩQ1=2

ðgHSÞ3=4
¼ 44:9� 201=2

ð9:81� 8:003Þ3=4
¼ 200:8=26:375 ¼ 7:613.
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FIGURE 9.21

Variation of Critical Cavitation Coefficient with Non-Dimensional Specific Speed for Francis and Kaplan Turbines
(Adapted from Moody and Zowski, 1969)
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According to eqn. (2.23b), when ΩSS exceeds 4.0 (rad) cavitation can occur, giving further confirmation of the
above conclusion.

Connection Between Thoma’s Coefficient, Suction Specific Speed
and Specific Speed
The definitions of suction specific speed and specific speed are

ΩSS ¼ ΩQ1=2

ðgHSÞ3=4
and ΩS ¼ ΩQ1=2

ðgHEÞ3=4
.

Combining these expressions and using eqn. (9.24), we get

ΩS

ΩSS
¼ gHS

gHE

� �3=4

¼ σ3=4;

therefore,

σ ¼ ΩS

ΩSS

� �4=3

. ð9:26Þ

Exercise
Verify the value of Thoma’s coefficient in the earlier example using the values of power specific speed,
efficiency, and suction specific speed given or derived.

We use as data ΩSS ¼ 7.613, ΩSP ¼ 0.8, and ηH ¼ 0.896 so that, from eqn. (2.16),

ΩS ¼ ΩSP=
ffiffiffiffiffiffi
ηH

p ¼ 0:8=
ffiffiffiffiffiffiffiffiffiffiffi
0:896

p
¼ 0:8452;
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Vapour Pressure of Water as Head (m) versus Temperature
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therefore,

σ ¼ ð0:8452=7:613Þ4=3 ¼ 0:05336.

Avoiding Cavitation
By rearranging eqn. (9.24) and putting σ ¼ σc, a critical value of z can be derived on the boundary
curve between cavitation and no cavitation. Thus,

z ¼ zc ¼ pa � pv
ρg

� σcHE ¼ ð101:3� 3:17Þ=9:81� 0:09� 150 ¼ �3:5 m.

This means that the turbine would need to be submerged to a depth of 3.5 m or more below the surface
of the tailwater and, for a Francis turbine, would lead to problems with regard to construction and
maintenance. Equation (9.24) shows that the greater the available head HE at which a turbine operates,
the lower it must be located relative to the surface of the tailrace.

9.9 APPLICATION OF CFD TO THE DESIGN OF HYDRAULIC TURBINES
With such a long history, the design of hydraulic turbines still depends very much on the experience
gained from earlier designs. According to Drtina and Sallaberger (1999), the use of computational fluid
dynamics for predicting the flow in these machines has brought further substantial improvements in
their hydraulic design, and resulted in a more complete understanding of the flow processes and
their influence on turbine performance. Details of flow separation, loss sources, and loss distributions
in components both at design and off-design as well as detecting low pressure levels associated with
the risk of cavitation are now amenable to analysis with the aid of CFD.

Drtina and Sallaberger presented two examples where the application of CFD resulted in a better
understanding of complex flow phenomena. Generally, this better knowledge of the flow has resulted
either in design improvements to existing components or to the replacement of components by a com-
pletely new design.

9.10 THE WELLS TURBINE
Introduction
Numerous methods for extracting energy from the motion of sea-waves have been proposed and inves-
tigated since the late 1970s. The problem is in finding an efficient and economical means of converting
an oscillating flow of energy into a unidirectional rotary motion for driving electrical generators.
A novel solution of this problem is the Wells turbine (Wells, 1976), a version of the axial-flow turbine.
For countries surrounded by the sea, such as the British Isles and Japan to mention just two, or with
extensive shorelines like the United States, wave energy conversion is an attractive proposition. Energy
conversion systems based on the oscillating water column and the Wells turbine have been installed at
several locations (Islay in Scotland and at Trivandrum in India). Figure 9.23 shows the arrangement of
a turbine and generator together with the oscillating column of seawater. The cross-sectional area of the
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plenum chamber is made very large compared to the flow area of the turbine so that a substantial air
velocity through the turbine is attained.

One version of the Wells turbine consists of a rotor with eight uncambered aerofoil section blades
set at a stagger angle of 90° (i.e., with their chord lines lying in the plane of rotation). A schematic
diagram of such a Wells turbine is shown in Figure 9.24. At first sight the arrangement might seem
to be a highly improbable means of energy conversion. However, once the blades have attained design
speed the turbine is capable of producing a time-averaged positive power output from the cyclically
reversing airflow with a fairly high efficiency. According to Raghunathan, Curran, and Whittaker
(1995) peak efficiencies of 65% have been measured at the experimental wave power station on
Islay. The results obtained from a theoretical analysis by Gato and Falcào (1984) showed that fairly
high values of the mean efficiency, on the order of 70–80%, may be attained in an oscillating flow
“with properly designed Wells turbines.”

Operating Principles
Figure 9.25(a) shows a blade in motion at the design speed U in a flow with an upward, absolute axial
velocity c1. It can be seen that the relative velocity w1 is inclined to the chordline of the blade at an
angle α. According to classical aerofoil theory, an isolated aerofoil at an angle of incidence α to a
free stream will generate a lift force L normal to the direction of the free stream. In a viscous fluid
the aerofoil will also experience a drag force D in the direction of the free stream. These lift and
drag forces can be resolved into the components of force X and Y as indicated in Figure 9.25(a), i.e.,

X ¼ L cos αþ D sin α, ð9:27Þ
Y ¼ L sin α�D cos α. ð9:28Þ

Plenum chamber

Air column motion

Turbine generator

Upward motion of wave in the device

FIGURE 9.23

Arrangement of Wells Turbine and Oscillating Water Column (Adapted from Raghunathan et al., 1995)
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The student should note, in particular, that the force Y acts in the direction of blade motion, giving
positive work production.

For a symmetrical aerofoil, the direction of the tangential force Y is the same for both positive and
negative values of α, as indicated in Figure 9.25b. If the aerofoils are secured to a rotor drum to form a
turbine row, as in Figure 9.24, they will always rotate in the direction of the positive tangential force
regardless of whether the air is approaching from above or below. With a time-varying, bi-directional
air flow the torque produced will fluctuate cyclically but can be smoothed to a large extent by means of
a high inertia rotor–generator.

It will be observed from the velocity diagrams that a residual swirl velocity is present for both direc-
tions of flow. It was suggested by Raghunathan et al. (1995) that the swirl losses at turbine exit can be
reduced by the use of guide vanes.

Two-Dimensional Flow Analysis
The performance of the Wells turbine can be predicted by means of blade element theory. In this ana-
lysis the turbine annulus is considered to be made up of a series of concentric elementary rings, each
ring being treated separately as a two-dimensional cascade.

The power output from an elementary ring of area 2πr dr is given by

dW ¼ ZU dy,

Electrical
generator

Turbo generator
shaft

Oscillating
air flow

Wells turbine
(rotor hub)

Tube

Uni-
directional
rotation

Oscillating
air flow

Uncambered aerofoils
at 908 stagger angle
(i.e., chord lines lie in
plane of rotation)

FIGURE 9.24

Schematic of a Wells Turbine (Adapted from Raghunathan et al., 1995)

336 CHAPTER 9 Hydraulic Turbines



(b)

(a)

2�

�

�

XL

D

Y

U
D Y

L
X

U

w2

c2

L X

�

�

DY

w1

w1

w1

w1

w2

D Y

L X

�

U

U

a
c1

c1

c2

FIGURE 9.25

Velocity and Force Vectors Acting on a Blade of a Wells Turbine in Motion: (a) Upward Absolute Flow onto Blade
Moving at Speed U; (b) Downward Absolute Flow onto Blade Moving at Speed U
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where Z is the number of blades and the tangential force on each blade element is

dY ¼ Cy
1
2
ρw2

1l

� �
dr.

The axial force acting on the blade elements at radius r is Z dX, where

dX ¼ CX
1
2
ρw2

1l

� �
dr,

and where Cx, Cy are the axial and tangential force coefficients. Now the axial force on all the blade
elements at radius r can be equated to the pressure force acting on the elementary ring:

2πrðp1 � p2Þdr ¼ ZCx
1
2
ρw2

1l

� �
dr,

so

ðp1 � p2Þ
1
2 ρc

2
x

¼ ZCxl

2πr sin 2α1
,

where w1 ¼ cx/sin α1.
An expression for the efficiency can now be derived from a consideration of all the power losses

and the power output. The power lost due to the drag forces is dWf ¼ w1 dD, where

dD ¼ ZCD
1
2
ρw2

1l

� �
dr

and the power lost due to exit kinetic energy is given by

dWk ¼ 1
2
c22

� �
d _m,

where d _m ¼ 2πrρcxdr and c2 is the absolute velocity at exit. Thus, the aerodynamic efficiency, defined
as power output/power input, can now be written as

η ¼

Z t

h
dWZ t

h
ðdW þ dWfþ dWkÞ

. ð9:29Þ

The predictions for non-dimensional pressure drop p* and aerodynamic efficiency η determined by
Raghunathan et al. (1995) are shown in Figure 9.26(a) and 9.26(b), respectively, together with experi-
mental results for comparison.

Design and Performance Variables
The primary input for the design of a Wells turbine is the air power based upon the pressure amplitude
(p1 � p2) and the volume flow rate Q at turbine inlet. The performance indicators are the pressure drop,
power and efficiency, and their variation with the flow rate. The aerodynamic design and consequent
performance is a function of several variables that have been listed by Raghunathan. In non-
dimensional form these are
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flow coefficient � ¼ cx=U;

solidity at mean radius σ ¼ 2lZ
πDtð1þ νÞ ;

hub/tip ratio ν ¼ Dh=Dt;

0

0.02

0.04

p

0 0.1 0.2

	5 cx /U

(a)

0

20

40

60

80

100

�
, %

0 0.1 0.2
	5 cx /U

(b)

FIGURE 9.26

Comparison of Theory with Experiment for the Wells Turbine: —— Theory ——— Experiment (Adapted from
Raghunathan, 1995): (a) Non-Dimensional Pressure Drop versus Flow Coefficient; (b) Efficiency versus Flow
Coefficient
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blade aspect ratio AR ¼ blade length=chord;

blade tip clearance ratio ¼ tc=Dt;

and also blade thickness ratio, turbulence level at inlet to turbine, frequency of waves, and the relative
Mach number. It was observed by Raghunathan, Setoguchi, and Kaneko (1987) that the Wells turbine
has a characteristic feature that makes it significantly different from most turbomachines: the absolute
velocity of the flow is only a (small) fraction of the relative velocity. It is theoretically possible for
transonic flow conditions to occur in the relative flow resulting in additional losses due to shock
waves and an interaction with the boundary layers leading to flow separation. The effects of these vari-
ables on the performance of the Wells turbine have been considered by Raghunathan (1995) and a
summary of some of the main findings follow.

Effect of Flow Coefficient
The flow coefficient � is a measure of the angle of incidence of the flow and the aerodynamic forces
developed are critically dependent upon this parameter. Typical results based on predictions and
experiments of the non-dimensional pressure drop p� ¼ Δp/ðρω2D2

t Þ and efficiency are shown in
Figure 9.26. For a Wells turbine a linear relationship exists between pressure drop and the flow rate
[Figure 9.26(a)] and this fact can be employed when making a match between a turbine and an oscil-
lating water column that also has a similar characteristic.

The aerodynamic efficiency η [Figure 9.26(b)] is shown to increase up to a certain value, after
which it decreases, because of boundary layer separation.

Effect of Blade Solidity
The solidity is a measure of the blockage offered by the blades to the flow of air and is an important
design variable. The pressure drop across the turbine is, clearly, proportional to the axial force acting
on the blades. An increase of solidity increases the axial force and likewise the pressure drop.
Figure 9.27 shows how the variations of peak efficiency and pressure drop are related to the amount
of the solidity.

Raghunathan gives correlations between pressure drop and efficiency with solidity:

p�=p�0 ¼ 1� σ2 and η=η0 ¼
1
2
ð1� σ2Þ,

where the subscript 0 refers to values for a two-dimensional isolated aerofoil (σ ¼ 0). A correlation
between pressure drop and solidity (for σ > 0) was also expressed as

p� ¼ Aσ1:6,

where A is a constant.

Effect of Hub–Tip Ratio
The hub–tip ratio ν is an important parameter as it controls the volume flow rate through the turbine but
also influences the stall conditions, the tip leakage, and, most importantly, the ability of the turbine to
run up to operating speed. Values of ν < 0.6 are recommended for design.
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The Starting Behaviour of the Wells Turbine
When a Wells turbine is started from rest the incoming relative flow will be at 90° to the rotor blades.
According to the choice of the design parameters the blades could be severely stalled and, consequen-
tially, the tangential force Y will be small and the acceleration negligible. In fact, if and when this situa-
tion occurs the turbine may accelerate only up to a speed much lower than the design operational
speed, a phenomenon called crawling. The problem can be avoided either by choosing a suitable
combination of hub–tip ratio and solidity values at the design stage or by some other means, such
as incorporating a starter drive. Values of hub–tip ratio and solidity that have been found to allow
self-starting of the Wells turbine are indicated in Figure 9.28.

Pitch-Controlled Blades
Some appreciable improvements have been made in the performance of the Wells turbine as a result of
incorporating pitch-controlled blades into the design. The efficiency of the original Wells turbine had a
peak of about 80% but the power output was rather low and the starting performance was poor. One
reason for the low power output was the low tangential force Y and low flow coefficient � as a con-
sequence of the fixed-blade geometry.
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FIGURE 9.27

Variation of Peak Efficiency and Non-Dimensional Pressure Drop (in Comparison to the Values for an Isolated
Aerofoil) versus Solidity: ——— Pressure —— Efficiency (Adapted from Raghunathan et al., 1995)
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A Turbine with Self Pitch-Controlled Blades
Performance enhancement of the Wells turbine reported by Kim et al. (2002) was achieved by incor-
porating swivelable vanes instead of fixed vanes in an experimental test rig. The method they devised
used symmetrical blades that pivot about the nose, whose pitch angle changes by a small amount as a
result of the varying aerodynamic forces developed by the oscillating flow. This change to the turbine
configuration enables a higher torque and efficiency to be obtained from the reciprocating airflow.
According to the authors the turbine is geometrically simpler and would be less expensive to manufac-
ture than some earlier methods using “active” pitch-controlled blades, e.g., Sarmento, Gato, and Falcào
(1987) and Salter (1993).

The working principle with self-pitch-controlled blades is illustrated in Figure 9.29. This shows one
of the turbine blades fixed to the hub by a pivot located near the leading edge, allowing the blade to move
between two prescribed limits, 
γ. An aerofoil set at a certain angle of incidence experiences a pitching
moment about the pivot, which causes the blade to flip. In this new position the blade develops a higher
tangential force and torque at a lower rotational speed than was obtained with the original fixed-blade
design of the Wells turbine.

Kim et al., using a piston-driven wind tunnel, measured the performance characteristics of the tur-
bine under steady flow conditions. To determine its running and starting characteristics, a quasi-steady
computer simulation of the oscillating through-flow was used together with the steady state character-
istics. Details of the turbine rotor are
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Self-Starting Capability of the Wells Turbine (Adapted from Raghunathan et al., 1995)
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The turbine characteristics under steady flow conditions were determined in the form of the output
torque coefficient Cτ and the input power coefficient CP against the flow coefficient, � ¼ cx /Uav,
defined as

Cτ ¼ τ0=½ρðc2x þ U2
avÞZlHrav=2�, ð9:30Þ

Cp ¼ Δp0=½ρðc2x þ U2
avÞZlHrx=2�, ð9:31Þ

where τ0 is the output torque and Δp0 is the total pressure difference across the turbine.
Figure 9.30(a) shows the Cτ versus � characteristics for the turbine for various blade-setting angles.

The solid line (γ ¼ 0°) represents the result obtained for the original, fixed-blade Wells turbine. For
values of γ > 0°, Cτ decreases with increasing γ in the stall-free zone but, beyond the original stall
point for γ ¼ 0, much higher values of Cτ were obtained.

Figure 9.30(b) shows the CP versus � characteristics for the turbine for various blade-setting angles.
This figure indicates that for γ > 0° the input power coefficient CP is lower than the case where γ ¼ 0°
for all values of �. Clearly, this is due to the variation in the rotor blade setting angle.

The instantaneous efficiency of the turbine is given by

η ¼ Ωτ0
QΔp0

¼ Cτ

�Cp
ð9:32aÞ

and the mean efficiency over the period of the wave, T ¼ 1/f, is

ηav ¼
1
T

Z T

0
Cτ

� �,
1
T

Z T

0
�Cpdt

� �
. ð9:32bÞ
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FIGURE 9.29

Air Turbine Using Self-Pitch-Controlled Blades for Wave Energy Conversion (from Kim et al., 2002, with Permis-
sion of Elsevier Science)

Table 9.5 Details of the Turbine Rotor
Blade profile NACA 0021 Hub–tip ratio 0.7

Blade chord, l 75 mm Tip diameter 298 mm

Nunber of blades, Z 8 Hub diameter 208 mm

Solidity 0.75 Blade length, H 45 mm
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Turbine Characteristics under Steady Flow Conditions: (a) Torque Coefficient; (b) Input Power Coefficient (from
Kim et al., 2002, with Permission of Elsevier Science)
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Using the measured characteristics for Cτ and CP and assuming a sinusoidal variation of the axial
velocity with a different maximum amplitude1 for each half cycle, as shown in Figure 9.31, the mean
efficiency of the cycle can be computed. Figure 9.32 shows the mean efficiency as a function of the
flow coefficient � for a range of γ values with cxi ¼ 0.6cxo.

1Kim et al. reported a lower maximum axial velocity cxi during inhalation than exhalstion cxo.
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Assumed Axial Velocity Variation (from Kim et al., 2002, with Permission of Elsevier Science)
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Compared to the basic Wells turbine (with γ ¼ 0°), the optimum result for γ ¼ 10° shows an
improved mean efficiency and an optimum flow coefficient of about 0.4. It is apparent that further
field testing would be needed to prove the concept.

Further Work
Energetech in Sydney, Australia, began (circa. 2003) the design of a half-scale test turbine, which will
be used for more detailed flow studies and to test new blade–hub arrangements. Also, a full-scale 1.6 m
diameter variable-pitch turbine has been constructed for use at the prototype wave energy plant at Port
Kembla, New South Wales, Australia. Studies of derivatives of the Wells turbine are also being under-
taken at research centres in the United Kingdom, Ireland, Japan, India, and other countries. It is still not
clear which type of blading or which pitch-control system will prevail. Kim et al. (2001) attempted a
comparison of five derivatives of the Wells turbine using steady flow data and numerical simulation of
an irregular wave motion. However, at present a “best” type has still not emerged from a welter of data.
A final conclusion must await the outcome of further development and the testing of prototypes
subjected to real sea wave conditions.

9.11 TIDAL POWER
Tidal energy is generated by the relative motion of the Earth, Sun, and Moon system whose gravi-
tational forces cause periodic changes to the water levels on the Earth’s surface. The magnitude
of the tide at any given location is the result of the varying positions of the Moon and Sun relative
to that of the Earth, the rotation of the Earth, the shape of the sea bed, and the magnifying effects
of the coast. The Moon is the main cause of these tides and the Sun to a much lesser extent. When
the Sun and Moon are in-line with the Earth (Figure 9.33) the gravitational force is greatest causing
bigger tides (so-called spring tides).

With the Sun and Moon disposed at 90° to the Earth the gravitational pull on the Earth is weakest
(the so-called neap tide). It is worth noting that tidal power is inexhaustible for all practical purposes
(it is a renewable energy resource).2 At any one moment in time there are two high tides and two low
tides around the Earth. One high tide occurs on the longitude closest to the Moon and the other on the
longitude furthest from it. Of course, at the same time the low tides are occurring at longitudes that are
at 90° to those at which the high tides are occurring. The interval between high tide is about 12 hours
25 minutes. The tidal range is the difference in height between high and low tides. In mid-ocean the
tidal range is between 0.5 and 1.0 metres but in the coastal regions the range can be significantly
enhanced. In the Severn estuary (United Kingdom) the tidal range can be as much as 14 m and
other shallow areas, e.g., the Bay of Fundy (Nova Scotia), the tidal range can exceed 13 m. Other
coastal regions have enhanced tidal ranges and many are under consideration for the installation of
tidal energy generators.

2Williams (2000) records that tidal activity has caused a loss of mechanical energy in the Earth–Moon system due to
pumping of water through natural restrictions around coastlines, to viscous dissipation at the seabed, and in turbulence.
Over the last 620 million years this loss of energy is estimated to have caused the Earth’s speed of rotation to slow down,
the period of rotation is estimated to have increased from 21.9 hours to the present 24 hours. Energy taken from the tides
by humankind would be insignificant on a world-scale and would have a negligible effect on the Earth’s rotation.
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Several of these tidal generators have been installed for long-term evaluations and testing and
recent commercial enterprises have produced successful results. Compared to wind and solar energy,
tidal power has the great advantage of being entirely predictable.

Categories of Tidal Power
There are two main types of tidal power generator:

(i) tidal stream systems that use the kinetic energy of the water to power turbines;
(ii) barrages that make use of the potential energy of the water trapped between high and low tides.

Barrages are essentially dams stretching across the full width of a tidal estuary. Because of their very
high civil engineering construction costs, environmental problems they can cause, and also a world-
wide lack of suitable sites (they require a minimum tidal range of at least 7 m for economic reasons)
very few are likely to be made. The La Rance scheme in France, however, has been in operation since
1966. It was the first tidal barrage in the world, took six years to build, and provides an output of
240 MW. This type of tidal power generator is not considered any further.

Tidal Stream Generators
This is a relatively new technology and is still under development. It appears that the most successful
approach is based on axial turbine practice. Since April 2007 Verdant Power has been running
a demonstration project in the East River between Queens and Roosevelt Island in New York City.
It is noted that the strength of the currents at that location have posed serious engineering
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FIGURE 9.33

Sun, Moon, and Earth Orientations Causing Spring and Neap Tides
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challenges: the blades of the 2006 and 2007 prototypes broke off. Because of the robust underwater
environment they encounter, new stronger blades were installed in September 2008. Several other
installations based on the axial turbine design have been tried out at Kvalsund in Norway (300 kW)
in 2003 and the SeaGen project at Strangford Lough in Northern Ireland has proved successful and
has been providing 1.2 MW to the grid.

The SeaGen Tidal Turbine
Strangford Lough is a large (150 km2) shallow lagoon situated on the east coast of Northern Ireland,
open to the sea. The entrance to the lough is a deep channel (the Narrows) about 8 km long and about
0.5 km wide. The currents through the Narrows are extremely strong and fast, reaching up to about
4 m/s at full flow.

At present little technical information has been released by the manufacturers (Marine Current Tur-
bines, Ltd.) about the SeaGen project but, using the data given and with the aid of actuator disc theory
as applied to wind turbines (Chapter 10), some of the leading values of the operating parameters can be
estimated. The background to the design philosophy, development and testing of the pioneering “Sea-
flow Project,” which preceded SeaGen, and the preparation for the installation of SeaGen itself is
described by Fraenkel (2007).

Figure 9.34 shows the structural arrangement of SeaGen comprising two unshrouded axial flow tur-
bines, 16 m tip diameter, supported on a single beam. At the design speed, given as 14 rpm, each tur-
bine provides 600 kW. The configuration of the turbines appears to be the same as that of horizontal
axis wind turbines studied in Chapter 10. The rotor blades can be pitched through 180º to allow opera-
tion of the turbine on both the ebb and flood tides.

From the actuator disc theory used in Chapter10, eqn. (10.15b), the turbine hydrodynamic power
output is

P ¼ 1
2
ρACpc

3
x1,

where A is the blade disc area, Cp is the power coefficient, ρ is the density of sea-water, and cx1 is the
velocity of the water approaching the turbine.

EXAMPLE 9.7
Determine the minimum flow speed of the water approaching the SeaGen tidal turbine in order for the full design
power of 600 kW (for each turbine) to be achieved and also the blade tip-speed ratio. Assume the power coefficient
Cp ¼ 0.3,3 the blade diameter is 16 m, and the density of sea-water is 1025 kg/m3.

Solution
From the preceding equation,

c3x1 ¼ P=
1
2
ρACp

� �
¼ P=

π
8
ρD2Cp

� �
¼ 600� 103

π
8 � 1025� 162 � 0:3

¼ 19:41.

3Values of Cp for horizontal axis wind turbines are normally found in the range 0.3 to 0.35. The Betz limit for Cp is 0.593.
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Therefore,

cx1 ¼ 2:69 m=s.

The blade tip speed is

Ut ¼ Ωrt ¼ 14
30

π

� �
� 8 ¼ 11:73 m=s.

Hence, the blade tip–speed ratio (when full power is reached) is,

J ¼ Ut

cx1
¼ 11:73

2:69
¼ 4:36.

This value of blade tip-speed ratio conforms with the values found for horizontal axis wind turbines (HAWTs).
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PROBLEMS

1. A generator is driven by a small, single-jet Pelton turbine designed to have a power specific
speed ΩSP ¼ 0.20. The effective head at nozzle inlet is 120 m and the nozzle velocity coefficient
is 0.985. The runner rotates at 880 rev/min, the turbine overall efficiency is 88%, and the
mechanical efficiency is 96%. If the blade speed–jet speed ratio, ν ¼ 0.47, determine
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(i) the shaft power output of the turbine;
(ii) the volume flow rate;
(iii) the ratio of the wheel diameter to jet diameter.

2. (a) Water is to be supplied to the Pelton wheel of a hydroelectric power plant by a pipe of uniform
diameter, 400 m long, from a reservoir whose surface is 200 m vertically above the nozzles. The
required volume flow of water to the Pelton wheel is 30m3/s. If the pipe skin friction loss is not to
exceed 10% of the available head and f ¼ 0.0075, determine the minimum pipe diameter.

(b)You are required to select a suitable pipe diameter from the available range of stock sizes to
satisfy the criteria given. The range of diameters (m) available are 1.6, 1.8, 2.0, 2.2, 2.4, 2.6,
and 2.8. For the diameter you have selected, determine

(i) the friction head loss in the pipe;
(ii) the nozzle exit velocity assuming no friction losses occur in the nozzle and the water

leaves the nozzle at atmospheric pressure;
(iii) the total power developed by the turbine assuming that its efficiency is 75% based upon

the energy available at turbine inlet.

3. A multi-jet Pelton turbine with a wheel 1.47 m diameter, operates under an effective head of
200 m at nozzle inlet and uses 4 m3/s of water. Tests have proved that the wheel efficiency is
88% and the velocity coefficient of each nozzle is 0.99. Assuming that the turbine operates at
a blade speed to jet speed ratio of 0.47, determine

(i) the wheel rotational speed;
(ii) the power output and the power specific speed;
(iii) the bucket friction coefficient given that the relative flow is deflected 165°;
(iv) the required number of nozzles if the ratio of the jet diameter–mean diameter of the wheel is

limited to a maximum value of 0.113.

4. A four-jet Pelton turbine is supplied by a reservoir whose surface is at an elevation of 500 m
above the nozzles of the turbine. The water flows through a single pipe 600 m long, 0.75 m dia-
meter, with a friction coefficient f ¼ 0.0075. Each nozzle provides a jet 75 mm diameter and the
nozzle velocity coefficient KN ¼ 0.98. The jets impinge on the buckets of the wheel at a radius of
0.65 m and are deflected (relative to the wheel) through an angle of 160°. Fluid friction within
the buckets reduces the relative velocity by 15%. The blade speed–jet speed ratio ν ¼ 0.48 and
the mechanical efficiency of the turbine is 98%. Calculate, using an iterative process, the loss of
head in the pipeline and, hence, determine for the turbine

(i) the speed of rotation;
(ii) the overall efficiency (based on the effective head);
(iii) the power output;
(iv) the percentage of the energy available at turbine inlet that is lost as kinetic energy at turbine

exit.

5. A Francis turbine operates at its maximum efficiency point at η0 ¼ 0.94, corresponding to a
power specific speed of 0.9 rad. The effective head across the turbine is 160 m and the speed
required for electrical generation is 750 rev/min. The runner tip speed is 0.7 times the spouting
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velocity, the absolute flow angle at runner entry is 72° from the radial direction, and the absolute
flow at runner exit is without swirl. Assuming there are no losses in the guide vanes and the
mechanical efficiency is 100%, determine

(i) the turbine power and the volume flow rate;
(ii) the runner diameter;
(iii) the magnitude of the tangential component of the absolute velocity at runner inlet;
(iv) the axial length of the runner vanes at inlet.

6. The power specific speed of a 4 MW Francis turbine is 0.8, and the hydraulic efficiency can be
assumed to be 90%. The head of water supplied to the turbine is 100 m. The runner vanes are
radial at inlet and their internal diameter is three quarters of the external diameter. The meridional
velocities at runner inlet and outlet are equal to 25 and 30%, respectively, of the spouting velo-
city. Determine

(i) the rotational speed and diameter of the runner;
(ii) the flow angles at outlet from the guide vanes and at runner exit;
(iii) the widths of the runner at inlet and at exit.

Blade thickness effects can be neglected.

7. (a) Review, briefly, the phenomenon of cavitation in hydraulic turbines and indicate the places
where it is likely to occur. Describe the possible effects it can have upon turbine operation
and the turbine’s structural integrity. What strategies can be adopted to alleviate the onset of
cavitation?

(b) A Francis turbine is to be designed to produce 27 MW at a shaft speed of 94 rev/min under
an effective head of 27.8 m. Assuming that the optimum hydraulic efficiency is 92% and the
runner tip speed–jet speed ratio is 0.69, determine

(i) the power specific speed;
(ii) the volume flow rate;
(iii) the impeller diameter and blade tip speed.

(c) A 1/10 scale model is to be constructed to verify the performance targets of the prototype
turbine and to determine its cavitation limits. The head of water available for the model tests
is 5.0 m. When tested under dynamically similar conditions as the prototype, the net positive
suction head HS of the model is 1.35 m. Determine for the model

(i) the speed and the volume flow rate;
(ii) the power output, corrected using Moody’s equation to allow for scale effects (assume a

value for n ¼ 0.2);
(iii) the suction specific speed ΩSS.

(d) The prototype turbine operates in water at 30°C when the barometric pressure is 95 kPa.
Determine the necessary depth of submergence of that part of the turbine most likely to be
prone to cavitation.

8. The preliminary design of a turbine for a new hydroelectric power scheme has under considera-
tion a vertical-shaft Francis turbine with a hydraulic power output of 200 MW under an effective
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head of 110 m. For this particular design a specific speed, Ωs ¼ 0.9 (rad), is selected for optimum
efficiency. At runner inlet the ratio of the absolute velocity to the spouting velocity is 0.77, the
absolute flow angle is 68°, and the ratio of the blade speed to the spouting velocity is 0.6583. At
runner outlet the absolute flow is to be without swirl. Determine

(i) the hydraulic efficiency of the rotor;
(ii) the rotational speed and diameter of the rotor;
(iii) the volume flow rate of water;
(iv) the axial length of the vanes at inlet.

9. A Kaplan turbine designed with a shape factor (power specific speed) of 3.0 (rad), a runner tip
diameter of 4.4 m, and a hub diameter of 2.0 m, operates with a net head of 20 m and a shaft
speed of 150 rev/min. The absolute flow at runner exit is axial. Assuming that the hydraulic effi-
ciency is 90% and the mechanical efficiency is 99%, determine

(i) the volume flow rate and shaft power output;
(ii) the relative flow angles at the runner inlet and outlet at the hub, at the mean radius and at

the tip.

10. A hydroelectric power station is required to generate a total of 4.2 MW from a number of single-jet
Pelton wheel turbines each operating at the same rotational speed of 650 rpm, at the same power
output and at a power specific speed of 1.0 rev. The nozzle efficiency ηN of each turbine can be
assumed to be 0.98, the overall efficiency ηo is assumed to be 0.88, and the blades speed to jet
speed ratio ν is to be 0.47. If the effective head HE at the entry to the nozzles is 250 m, determine

(i) the number of turbines required (round up the value obtained);
(ii) the wheel diameter;
(iii) the total flow rate.

11. (a) In the previous problem the reservoir surface is 300 m above the turbine nozzles and the
water is supplied to the turbines by three pipelines, each 2 km long and of constant diameter.
Using Darcy’s formula determine a suitable diameter for the pipes assuming the friction fac-
tor f ¼ 0.006.

(b) The chief designer of the scheme decides that a single pipeline would be more economical
and that its cross-sectional area would need to be equal to the total cross-sectional area of the
pipelines in the previous scheme. Determine the resulting friction head loss assuming that
the friction factor remains the same and that the total flow rate is unchanged.

12. Sulzer Hydro Ltd. of Zurich at one time manufactured a six-jet vertical shaft Pelton wheel turbine
with a power rating of 174.4 MW, with a runner diameter of 4.1 m, and an operating speed of
300 rev/min with an effective head of 587 m. Assuming the overall efficiency is 0.90 and the
nozzle efficiency is 0.99, determine

(i) the power specific speed;
(ii) the blade speed–jet speed ratio;
(iii) the volume flow rate.

Considering the values shown in Figure 9.2, comment on your result.
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13. A vertical axis Francis turbine has a runner diameter of 0.825 m, operates with an effective head,
HE ¼ 6.0 m, and produces 200 kW at the shaft. The rotational speed of the runner is 250 rpm, the
overall efficiency is 0.90, and the hydraulic efficiency is 0.96. If the meridional (i.e., flow) velo-
city of the water through the runner is constant and equal to 0:4

ffiffiffiffiffiffiffiffiffiffiffi
2gHE

p
and the exit absolute flow

is without swirl, determine the vane exit angle, the inlet angle of the runner vanes, and the runner
height at inlet. Evaluate the power specific speed of the turbine and decide if the data given is
consistent with the stated overall efficiency.

14. (a) A prototype Francis turbine is to be designed to operate at 375 rpm4 at a power specific
speed of 0.8 (rad), with an effective head of 25 m. Assuming the overall efficiency is 92%,
the mechanical efficiency is 99%, the runner tip speed to jet speed ratio is 0.68, and the flow
at runner exit has zero swirl, determine

(i) the shaft power developed;
(ii) the volume flow rate;
(iii) the impeller diameter and blade tip speed;
(iv) the absolute and relative flow angles at runner inlet if the meridional velocity is constant

and equal to 7.0 m/s.

(b) Using Thoma’s coefficient and the data in Figure 9.21, investigate whether the turbine is
likely to experience cavitation. The vertical distance between the runner and the tailrace is
2.5 m, the atmospheric pressure is 1.0 bar, and the water temperature is 20°C.

15. For the previous problem a 1/5 scale model turbine of the prototype is to be made and tested to
check that the performance targets are valid. The test facility has an available head of 3 m. For
the model, determine

(i) the rotational speed and volume flow rate;
(ii) the power developed (uncorrected for scale).

16. A radial flow hydraulic turbine whose design is based on a power specific speed, Ωsp ¼ 1.707 is
to produce 25 MW from a total head, HE ¼ 25 m. The overall turbine efficiency ηo ¼ 0.92, the
mechanical efficiency is 0.985, and the loss in head in the nozzles is 0.5 m. The ratio of the blade
tip speed to jet speed is 0.90. Assuming the meridional velocity is constant and equal to 10 m/s
and there is no swirl in the runner exit flow, determine

(i) the volume flow rate through the turbine;
(ii) the rotational speed and diameter of the runner;
(iii) the absolute and relative flow angles at entry to the runner.

17. An axial flow hydraulic turbine operates with a head of 20 m at turbine entry and develops
10 MW when running at 250 rev/min. The blade tip diameter is 3 m, the hub diameter is
1.25 m, and the runner design is based upon a “free vortex.” Assuming the hydraulic efficiency
is 94%, the overall efficiency is 92%, and the flow at exit is entirely axial, determine the absolute
and relative flow angles upstream of the runner at the hub, mean, and tip radii.

4This speed is suitable for synchronous generation at 50 cycles per second.
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18. (a) A model of a Kaplan turbine, built to a scale of 1/6 of the full-scale prototype, develops an
output of 5 kW from a net head of 1.2 m of water at a rotational speed of 300 rev/min and a
flow rate of 0.5 m3/s. Determine the efficiency of the model.

(b) By using the scaling laws estimate the rotational speed, flow rate, and power of the prototype
turbine when running with a net head of 30 m.

(c) Determine the power specific speed for both the model and for the prototype, corrected with
Moody’s equation. To take account of the effects of size (scale) use the Moody formula

ð1� ηpÞ ¼ ð1� ηmÞðDm=DpÞ0:25

to estimate the full-scale efficiency, ηp, and the corresponding power.

Problems 355



This page intentionally left blank



CHAPTER

Wind Turbines 10
Take care your worship, those things over there are not giants but windmills.

M. Cervantes, Don Quixote, Part 1, Chapter 8

10.1 INTRODUCTION
Wind power comes from the conversion of wind energy into electricity using wind turbines to drive the
electrical generators. Over the past three decades there has been a remarkable growth in global installed
generating capacity. The data given in Figure 10.1 obtained from statistics published by theGlobal Wind
Energy Council (GWEC), the European Wind Energy Association (EWEA), the American Wind Energy
Association (AWEA), and others showing the regional and worldwide growth of installed wind power
capacity. It is interesting to note that the global wind power capacity is now doubling every three years.
The biggest regional contributors to this growth are Europe (particularly Germany and Spain) and the
United States. Up to May 2009, 80 countries around the world contributed to the generation of wind
power on a commercial scale. Predicting the growth of wind power generation is far from reliable. At
the end of 2008 the total worldwide wind power capacity had reached 121 GW. The prediction by the
GermanWind Energy Association in March 2004 that the global market for wind power could reach 150
GW by 2012 turns out to be too pessimistic. This can be shown as follows, based upon the exponential
law of growth:

P ¼ P0 expðktÞ,
where P0 is the initial installed power¼ 121 GW and P is the predicted installed power¼ 150 GW. We
can determine the amount of time t needed to reach the predicted installed power if we know the value of
the constant k. As the rate of doubling, previously stated, k¼ 3 years, ln(2)¼ k � 3, so k¼ ln(2)/
3¼ 0.231. Thus,

P=P0 ¼ 150=121 ¼ expð0:231tÞ.
Therefore, t¼ 0.93 years. So, we should have passed that goal already (November 2009)!

Wind Energy Availability
The Earth receives more energy from the Sun at the equator than at the poles. Dry land heats up (and
cools down) more quickly than the oceans. This differential heating and cooling, which is greatest near
the equator, drives an atmospheric convection system extending from sea level to the upper

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00010-9
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atmosphere. The warm air rises, circulates in the atmosphere, and gradually sinks back to the surface in
the cooler regions. At the upper levels of the atmosphere, continuous wind speeds are known to exceed
150 km/h. The large scale motion of the air at altitude causes a circulation pattern with well-known
features at sea level such as the trade winds.

The most striking characteristic of wind energy is its variability both spatially and temporally. This
variability depends on many factors: climatic region, topography, season of the year, altitude, type of
local vegetation, etc. Topography and altitude have a major influence on wind strength. The strength of
wind on the high ground and mountain tops is greater than in the sheltered valleys. Coastal regions are
often more windy than further inland because of the difference in heating between land and sea. On the
other hand the presence of vegetation and its density is a factor that usually lessens wind strength.

At any given location temporal variability can mean that the amount of wind strength can change
from one year to the next. The cause of these changes are not well understood but may be generated by
large scale variations in weather systems and ocean currents.

The proper design and size of a wind turbine will depend crucially upon the site under considera-
tion having a favourable wind. Briefly, to be favourable, the wind would need to be of sufficient
strength and duration at an acceptable height. For the locations being considered as possible sites
extended anemometric surveys (lasting over at least a year) are needed to determine the nature of
the wind speed distribution with respect to time and height above the ground. These surveys are gen-
erally carried out at a fairly standard height of 30 m above the ground and, when required, some sort of
extrapolation is made for estimating wind speeds at other heights. To assess the frequency of the
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occurrence of wind speeds at a site, a probability distribution function is often employed to fit the
observed data. Several types of these distribution functions are commonly used:

(i) the simple, but less accurate, single-parameter Rayleigh distribution;
(ii) the complicated but more accurate, two-parameter Weibull distribution.

Some further details of these distributions and their application are given by Burton et al. (2001).
From these data, estimates of power output for a range of turbine designs and sizes can be made.

Wind turbine rotors have been known to suffer damage or even destruction from excessive wind speeds
and obviously this aspect requires very careful consideration of the worst case wind conditions so the
problem may be avoided.

An important issue concerning the installation of wind power plants involves their environmental
impact. Walker and Jenkins (1997) have outlined the most significant benefits for installing wind tur-
bines as well as the reasons put forward to counter their installation. It is clear that the benefits include
the reduction in the use of fossil fuels, leading to a reduction in the emission of pollutants (the most
important of these being the oxides of carbon, sulphur, and nitrogen). Any emissions caused by the
manufacture of the wind turbine plant itself are offset after a few months of emission-free operation.
Similarly, the energy expended in the manufacture of a wind turbine, according to the World Energy
Council (1994), is paid back after about a year’s normal productive operation.

Historical Viewpoint
It may be of interest to mention a little about how the modern wind turbine evolved. Of course, the
extraction of mechanical power from the wind is an ancient practice dating back at least 3000 years.
Beginning with sailing ships the technical insight gained from them was extended to the early
windmills for the grinding of corn etc. Windmills are believed to have originated in Persia in the
seventh century and their use had spread across Europe by the twelfth century. The design was gra-
dually improved, especially in England during the eighteenth century where millwrights developed
remarkably effective self-acting control mechanisms. A brick built tower windmill, Figure 10.2, a
classic version of this type, still exists on Bidston Hill1 near Liverpool, United Kingdom, and was
used to grind corn into flour for 75 years up until 1875. It has now become a popular historical
attraction.

The wind pump was first developed in Holland for drainage purposes while, in the United States the
deep-well pump was evolved for raising water for stock watering. Most windmills employ a rotor with
a near horizontal axis, the sails were originally of canvas, a type still in use today in Crete. The English
windmill employed wooden sails with pivoted slats for control. The U.S. wind-pump made use of a
large number of sheet-metal sails (Lynette and Gipe, 1998). The remarkable revival of interest in mod-
ern wind powered machines appears to have started in the 1970s because of the so-called fuel crisis.
A most interesting brief history of wind turbine design is given by Eggleston and Stoddard (1987).
Their focus of attention was the use of wind power for generating electrical energy rather than mechan-
ical energy. A rather more detailed history of the engineering development of windmills from the ear-
liest times leading to the introduction of the first wind turbines is given by Shepherd (1998).

1It is situated within 1 km of the Liverpool author’s home.

10.1 Introduction 359



10.2 TYPES OF WIND TURBINE
Wind turbines fall into two main categories, those that depend upon aerodynamic drag to drive them
(i.e., the old style windmills) and those that depend upon aerodynamic lift. Drag machines such as
those developed in ancient times by the Persians were of very low efficiency compared with modern
turbines (employing lift forces) and so are not considered any further in this chapter.

The design of the modern wind turbine is based upon aerodynamic principles, which are elaborated
later in this chapter. The rotor blades are designed to interact with the oncoming airflow so that an
aerodynamic lift force is developed. A drag force is also developed but, in the normal range of pre-stall

FIGURE 10.2

Tower Windmill, Bidston, Wirral, UK. Circa 1875
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operation, this will amount to only about 1 or 2% of the lift force. The lift force, and the consequent
positive torque produced, drives the turbine thereby developing output power.

In this chapter, the focus of attention is necessarily restricted to the aerodynamic analysis of the
horizontal axis wind turbine (HAWT) although some mention is given of the vertical axis wind
turbine (VAWT). The VAWT, also referred to as the Darrieus turbine after its French inventor
in the 1920s, uses vertical and often slightly curved symmetrical aerofoils. Figure 10.3(a) shows
a general view of the very large 4.2 MW vertical axis Darrieus wind turbine called the Eolé
VAWT installed at Cap-Chat, Quebec, Canada, having an effective diameter of 64 m and a
blade height of 96 m.

Figure 10.3(b), from Richards (1987), is a sketch of the major components of this aptly named egg-
beater wind turbine. Guy cables (not shown) are required to maintain the turbine erect. This type of
machine has one distinct advantage: it can operate consistently without regard to wind direction. How-
ever, it does have a number of major disadvantages:

(i) wind speeds are low close to the ground so that the lower part of the rotor is rather less productive
than the upper part;

(ii) high fluctuations in torque occur with every revolution;
(iii) negligible self-start capability;
(iv) limited capacity for speed regulation in winds of high speed.

(a) (b)

Brake discs
Flexible coupling
Building enclosure

Generator 8.5 m

96 m

64 m

FIGURE 10.3

(a) The 4 MW Eolè VAWT Installed at Cap-Chat, Quebec; (b) Sketch of VAWT Eolé Showing the Major Compo-
nents, Including the Direct-Drive Generator (Courtesy AWEA)
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Darrieus turbines usually require mechanical power input to start them but have been known to self-start.
(Several VAWTs have been destroyed by such self-starts.) For assisted starting the method used is to run
the generator as a motor up to a speed when aerodynamic wind forces can take over. Stopping a VAWT
in high winds is difficult as aerodynamic braking has not been successful and friction braking is needed.

According to Ackermann and Söder (2002), VAWTs were developed and produced commercially
in the 1970s until the 1980s. Since the end of the 1980s research and development on VAWTs has
virtually ceased in most countries, apart from Canada (see Gasch, 2002; Walker and Jenkins, 1997;
and Divone, 1998).

Large HAWTs
The HAWT type is currently dominant in all large scale applications for extracting power from the wind
and seems likely to remain so. The large HAWT, Figure 10.4(a), operating at Barrax, Spain, is 104 m in

FIGURE 10.4

(a) First General Electric Baseline HAWT, 3.6 MW, 104 m Diameter, Operating at Barrax, Spain, Since 2002.
(Courtesy U.S. Department of Energy). (b) The Bergey Excel-S, Three-Bladed, 7 m Diameter Wind Turbine,
Rated at 10 kW at Wind Speed of 13 m/s (With Permission of Bergey Windpower Company)
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diameter and can generate 3.6 MW. (This size of wind turbine has now, in 2010, become fairly common-
place, especially in the coastal waters around Great Britain.) Basically, a HAWT comprises a nacelle
mounted on top of a high tower, containing a generator and, usually, a gearbox to which the rotor is
attached. Increasing numbers of wind turbines do not have gearboxes but use a direct drive. A powered
yaw system is used to turn the turbine so that it faces into the wind. Sensors monitor the wind direction
and the nacelle is turned according to some integrated average wind direction. The number of rotor
blades employed depends on the purpose of the wind turbine. As a rule, three-bladed rotors are used
for the generation of electricity. Wind turbines with only two or three blades have a high ratio of
blade tip speed to axial flow velocity (the tip–speed ratio), but only a low starting torque and may
even require assistance at startup to bring it into the useful power producing range of operation. Com-
mercial turbines range in capacity from a few hundred kilowatts to more than 3 MW. The crucial para-
meter is the diameter of the rotor blades, the longer the blades, the greater is the “swept” area and the
greater the possible power output. Rotor diameters now range to over 100 m. The trend has been towards
larger machines as they can produce electricity at a lower price. Most wind turbines of European origin
are made to operate upwind of the tower, i.e., they face into the wind with the nacelle and tower down-
stream. However, there are also wind turbines of downwind design, where the wind passes the tower
before reaching the rotor blades. Advantages of the upwind design are that there is little or no tower
“shadow” effect and lower noise level than the downwind design.

Small HAWTs
Small wind turbines with a horizontal axis were developed in the nineteenth century for mechanical
pumping of water, e.g., the American farm pump. The rotors had 20 or more blades, a low tip–
speed ratio but a high starting torque. With increasing wind speed pumping would then start automa-
tically. According to Baker (1985), the outgrowth of the utility grid caused the decline of the wind dri-
ven pump in the 1930s. However, there has been a worldwide revival of interest in small HAWTs of
modern design for providing electricity in remote homes and isolated communities that are “off grid.”
The power output of such a wind powered unit would range from about 1 to 50 kW. Figure 10.4(b)
shows the Bergey Excel-S, which is a three-blade upwind turbine rated at 10 kW at a wind speed of
13 m/s. This is currently America’s most popular residential and small business wind turbine.

Tower Height
An important factor in the design of HAWTs is the tower height. The wind speed is higher the greater the
height above the ground. This is themeteorological phenomenon known aswind shear. This common char-
acteristic ofwind can be used to advantage by employingwind towerswith increased hub heights to capture
more wind energy. A study by Livingston and Anderson (2004) investigated the wind velocities at heights
up to 125 m on the Great Plains (United States) and provide a compelling case for operating wind turbines
with hub heights of at least 80 m. Typically, in daytime the variation follows the wind profile one-seventh
power law (i.e., wind speed increases proportionally to the seventh root of height above the surface):

cx=cx,ref ¼ ðh=hrefÞn,
where cx is the wind speed at height h, cx,ref is the knownwind speed at a reference height href. The exponent
n is an empirically derived coefficient. In a neutrally stable atmosphere and over open ground (the normal
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condition), n ≈ 1/7 or 0.143. Over open water a more appropriate coefficient is n ≈ 0.11. As an example
it is required to estimate the wind speed at a height of 80 m above the ground using a reference velocity
of 15 m/s measured at a height of 50 m:

cx ¼ 15ð80=50Þ0:143 ¼ 16:04 m=s.

Even small increases in wind speed can be important. It is shown later that the power extracted from the
wind varies as the cube of the wind speed. Using this example the increase in the power extracted would be
over 22% as a result of increasing the hub height from 50m to 80m. Of course there is a penalty as costs are
likely to be greater for the stronger tower structure required.

Storing Energy
Because of the intermittency of wind and the unavailability at times of the required energy it is often
claimed by opponents of wind turbines that it is better to rely on other sources of power. Clearly, some
form of energy storage can be devised. In Spain, more than 13.8 GW of wind power capacity has been
installed, providing about 10% of that country’s electicity needs, according to Renewable Energy
World (September–October, 2009). At Iberdrola, Spain, a pumped storage scheme (852 MW) is
now being used to store the excess wind turbine energy and three further pumped storage plants are
likely to be built with a total capacity of 1.64 GW.

10.3 OUTLINE OF THE THEORY
In the following pages the aerodynamic theory of the HAWT is gradually developed, starting with the
simple one-dimensional momentum analysis of the actuator disc and followed by the more detailed
analysis of the blade element theory. The flow state just upstream of the rotor plane forms the so-called
inflow condition for the rotor blades and from which the aerodynamic forces acting on the blades can
be determined. The well-known blade element momentum (BEM) method is outlined and used exten-
sively. A number of worked examples are included at each stage of development to illustrate the appli-
cation of the theory. Detailed calculations using the BEM method were made to show the influence of
various factors, such as the tip–speed ratio and blade number on performance. Further development of
the theory includes the application of Prandtl’s tip loss correction factor, which corrects for a finite
number of blades. Glauert’s optimisation analysis is developed and used to determine the ideal
blade shape for a given lift coefficient and to show how the optimum rotor power coefficient is influ-
enced by the choice of tip–speed ratio.

10.4 ACTUATOR DISC APPROACH
Introduction
The concept of the actuator disc was used in Chapter 6 as a method of determining the three-dimensional
flows in compressor and turbine blade rows. Betz (1926) in his seminal work on the flow through wind-
mill blades used a much simpler version of the actuator disc. As a start to understanding the power pro-
duction process of the turbine consider the flow model shown in Figure 10.5 where the rotor of the
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HAWT is replaced by an actuator disc. It is necessary to make a number of simplifying assumptions con-
cerning the flow but, fortunately, the analysis yields useful approximate results.

Theory of the Actuator Disc
The following assumptions are made:

(i) steady uniform flow upstream of the disc;
(ii) uniform and steady velocity at the disc;
(iii) no flow rotation produced by the disc;
(iv) the flow passing through the disc is contained both upstream and downstream by the boundary

stream tube;
(v) the flow is incompressible.

Because the actuator disc offers a resistance to the flow the velocity of the air is reduced as it
approaches the disc and there will be a corresponding increase in pressure. The flow crossing through
the disc experiences a sudden drop in pressure below the ambient pressure. This discontinuity in pres-
sure at the disc characterises the actuator. Downstream of the disc there is a gradual recovery of the
pressure to the ambient value.

We define the axial velocities of the flow far upstream (x → �∞), at the disc (x¼ 0) and far down-
stream (x → ∞) as cx1, cx2 and cx3, respectively. From the continuity equation the mass flow is

_m ¼ ρcx2A2, ð10:1Þ
where ρ¼ air density and A2¼ area of disc.

The axial force acting on the disc is

X ¼ _mðcx1 � cx3Þ ð10:2Þ
and the corresponding power extracted by the turbine or actuator disc is

P ¼ Xcx2 ¼ _mðcx1 � cx3Þcx2. ð10:3Þ

Stream tube

Plane
of disc

cx1

cx2
cx3

1
2

3

FIGURE 10.5

Actuator Disc and Boundary Stream Tube Model
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The rate of energy loss by the wind must then be

PW ¼ _mðc2x1 � c2x3Þ=2: ð10:4Þ
Assuming no other energy losses, we can equate the power lost by the wind to the power gained by the
turbine rotor or actuator:

PW ¼ P,

_mðc2x1 � c2x3Þ=2 ¼ _mðcx1 � cx3Þcx2,
therefore,

cx2 ¼ 1
2

cx1 þ cx3ð Þ. ð10:5Þ

This is the proof developed by Betz (1926) to show that the velocity of the flow in the plane of the
actuator disc is the mean of the velocities far upstream and far downstream of the disc. We should
emphasise again that wake mixing, which must physically occur far downstream of the disc, has so
far been ignored.

An Alternative Proof of Betz’s Result
The air passing across the disc undergoes an overall change in velocity (cx1� cx3) and a corresponding
rate of change of momentum equal to the mass flow rate multiplied by this velocity change. The force
causing this momentum change is equal to the difference in pressure across the disc times the area of
the disc. Thus,

ðp2þ � p2�ÞA2 ¼ _mðcx1 � cx3Þ ¼ ρA2cx2ðcx1 � cx3Þ,
Δp ¼ ðp2þ � p2�Þ ¼ ρcx2ðcx1 � cx3Þ

ð10:6Þ

The pressure difference Δp is obtained by separate applications of Bernoulli’s equation to the two flow
regimes of the stream tube.

Referring to region 1–2 in Figure 10.5,

p1 þ 1
2
ρc2x1 ¼ p2þ þ 1

2
ρc2x2

and for region 2–3,

p3 þ 1
2
ρc2x3 ¼ p2� þ 1

2
ρc2x2.

By taking the difference of the two equations we obtain

1
2
ρðc2x1 � c2x3Þ ¼ p2þ � p2�. ð10:7Þ

Equating eqns. (10.6) and (10.7) we arrive at the result previously found,

cx2 ¼ 1
2

cx1 þ cx3ð Þ. ð10:5Þ
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The axial flow induction factor is a.
By combining eqns. (10.1) and (10.3),

P ¼ ρA2c
2
x2ðcx1 � cx3Þ

and from eqn. (10.5) we can obtain

cx3 ¼ 2cx2 � cx1;

hence,

cx1 � cx3 ¼ cx1 � 2cx2 þ cx1 ¼ 2ðcx1 þ cx2Þ,
and so

P ¼ 2ρA2c
2
x2ðcx1 � cx2Þ. ð10:8Þ

It is convenient to define an axial flow induction factor, a (invariant with radius), for the actuator
disc:

a ¼ ðcx1 � cx2Þ=cx1. ð10:9Þ
Hence,

cx2 ¼ cx1ð1� aÞ,
P ¼ 2aρA2c3x1ð1� aÞ2 ð10:10aÞ

The Power Coefficient
For the unperturbed wind (i.e., velocity is cx1) with the same flow area as the disc (A2¼ πR2), the
kinetic power available in the wind is

P0 ¼ 1
2
c2x1 ρA2cx1ð Þ ¼ 1

2
ρA2c

3
x1.

A power coefficient Cp is defined as

Cp ¼ P=P0 ¼ 4að1� aÞ2. ð10:11Þ
The maximum value of Cp is found by differentiating Cp with respect to a, i.e., finally

dCp=d a ¼ 4ð1� aÞð1� 3aÞ ¼ 0,

which gives two roots, a ¼ 1=3 and 1.0. Using the first value, the maximum value of the power coef-
ficient is

Cpmax ¼ 16=27 ¼ 0:593. ð10:12aÞ
This value of Cp is often referred to as the Betz limit, referring to the maximum possible power coeffi-
cient of the turbine (with the prescribed flow conditions).

A useful measure of wind turbine performance is the ratio of the power coefficient Cp to the maximum
power coefficient Cpmax. This ratio, which may be called the relative maximum power coefficient, is

ζ ¼ 27=16Cp. ð10:12bÞ
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The Axial Force Coefficient
The axial force coefficient is defined as

Cx ¼ X

�
1
2
ρc2x1A2

� �

¼ 2 _mðcx1 � cx2Þ
�

1
2
ρc2x1A2

� �

¼ 4cx2ðcx1 � cx2Þ=c2x1
¼ 4að1� aÞ.

ð10:13Þ

By differentiating this expression with respect to a we can show that CX has a maximum value of unity at
a ¼ 0:5. Figure 10.6 shows the variation of both Cp and CX as functions of the axial induction factor, a.

Example 10.1
Determine the static pressure changes that take place

(i) across the actuator disc;
(ii) up to the disc from far upstream;
(iii) from the disc to far downstream.

The pressure immediately before the disc is p2+. The pressure immediately after the disc is p2�.

Solution
The force acting on the disc is X¼A2(p2þ � p2�)¼A2Δp. The power developed by the disc is

P ¼ Xcx2 ¼ A2Δpcx2.

0

Cp

Cx

1.0

1.0

a

FIGURE 10.6

Variation of Power Coefficient CP and Axial Force Coefficient CX as Functions of the Axial Induction Factor a
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Also, we have

P ¼ 1
2
_mðc2x1 � c2x3Þ.

Equating for power and simplifying, we get

Δp

�
1
2
ρc2x1

� �
¼ 1�ðcx3=cx1Þ2
h i

¼ 1�ð1� 2aÞ2 ¼ 4a 1� að Þ.

This is the pressure change across the disc divided by the upstream dynamic pressure.
For the flow field from far upstream of the disc,

p01 ¼ p1 þ 1
2
ρc2x1 ¼ p2þ þ 1

2
ρc2x2

p2þ � p1ð Þ ¼ 1
2
ρðc2x1 � c2x2Þ

ðp2þ � p1Þ
�

1
2
ρc2x1

� �
¼ 1�ðcx2=cx1Þ2 ¼ 1�ð1� aÞ2 ¼ a 2� að Þ.

For the flow field from the disc to far downstream,

p03 ¼ p3 þ 1
2
ρc2x3 ¼ p2� þ 1

2
ρc2x2

ðp2� � p3Þ
�

1
2
ρc2x1

� �
¼ ðc2x3 � c2x2Þ=c2x1

and, noting that p3¼ p1, we finally obtain

ðp2� � p1Þ
�

1
2
ρc2x1

� �
¼ ð1� 2aÞ2 �ð1� aÞ2 ¼ � a 2� 3að Þ.

Figure 10.7 indicates approximately the way the pressure varies before and after the actuator disc.

p22

p21

p1

FIGURE 10.7

Schematic of the Pressure Variation Before and After the Plane of the Actuator Disc
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Example 10.2
Determine the radii of the unmixed slipstream at the disc (R2) and far downstream of the disc (R3) compared with
the radius far upstream (R1).

Solution
Continuity requires that

πR2
1cx1 ¼ πR2

2cx2 ¼ πR2
3cx3,

ðR2=R1Þ2 ¼ cx1=cx2 ¼ 1=ð1� aÞ, R2=R1 ¼ 1=ð1� aÞ0:5,
ðR3=R1Þ2 ¼ cx1=cx3 ¼ 1=ð1� 2aÞ, R3=R1 ¼ 1=ð1� 2aÞ0:5,
ðR3=R2Þ ¼ ½ð1� aÞ=ð1� 2aÞ�0:5.

Choosing a value of a ¼ 1=3, corresponding to the maximum power condition, the radius ratios are
R2/R1¼ 1.225, R3/R1¼ 1.732 and R3/R2¼ 1.414.

Example 10.3
Using the preceding expressions for an actuator disc, determine the power output of a HAWT of 30 m tip diameter
in a steady wind blowing at

(i) 7.5 m/s;
(ii) 10 m/s.

Assume that the air density is 1.2 kg/m3 and that a ¼ 1=3.

Solution
Using eqn. (10.10a) and substituting a ¼ 1=3, ρ¼ 1.2 kg/m2 and A2¼ π152,

P ¼ 2aρA2c
3
x1ð1� aÞ2 ¼ 2

3
� 1:2� π152 � 1� 1

3

� �2

c3x1 ¼ 251:3c3x1.

(i) With cx1¼ 7.5 m/s, P¼ 106 kW.
(ii) With cx1¼ 10 m/s, P¼ 251.3 kW.

These two results give some indication of the power available in the wind.

Correcting for High Values of a
It is of some interest to examine the theoretical implications of what happens at high values of a and
compare this with what is found experimentally. From the actuator disc analysis we found that the
velocity in the wake far downstream was determined by cx3 ¼ cx1ð1 – 2aÞ, and this becomes zero
when a ¼ 0:5. In other words the actuator disc model has already failed as there can be no flow
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when a ¼ 0:5. It is as if a large flat plate had been put into the flow, completely replacing the rotor.
Some opinion has it that the theoretical model does not hold true for values of a even as low as 0.4. So,
it becomes necessary to resort to empirical methods to include physical reality.

Figure 10.8 shows experimental values ofCX for heavily loaded turbines plotted against a, taken from
various sources, together with the theoretical curve ofCX versus a given by eqn. (10.13). The part of this
curve in the range 0:5 < a <1:0, shown by a broken line, is invalid as already explained. The experi-
ments revealed that the vortex structure of the flow downstream disintegrates and that wake mixing with
the surrounding air takes place. Various authors including Glauert (1935), Wilson and Walker (1976),
and Anderson (1980), have presented curves to fit the data points in the regime a> 0:5: Anderson
obtained a simple “best fit” of the data with a straight line drawn from a point denoted by CXA located
at a ¼ 1:0 to a tangent point T, the transition point, on the theoretical curve located at a ¼ aT . It is easy to
show, by differentiation of the curve CX ¼ 4að1� aÞ then fitting a straight line, with the equation,

CX ¼ CXA � 4


C0:5
XA � 1

�

1� a

�
, ð10:14Þ

where

aT ¼ 1� 1
2
C0:5
XA .

Anderson recommended a value of 1.816 for CXA. Using this value, eqn. (10.14) reduces to

CX ¼ 0:4256 þ 1:3904a, ð10:15aÞ
where aT ¼ 0.3262.

Sharpe (1990) noted that, for most practical, existent HAWTs, the value of a rarely exceeds 0.6.

0 0.2 0.4

0.8

C
X

CXA
1.6

0.6 0.8 1.0
a

aT

FIGURE 10.8

Comparison of Theoretical Curve and Measured Values of CX
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10.5 ESTIMATING THE POWER OUTPUT
Preliminary estimates of rotor diameter can easily be made using simple actuator disc theory. A number
of factors need to be taken into account, i.e., the wind regime in which the turbine is to operate and the
tip–speed ratio. Various losses must be allowed for, the main ones being the mechanical transmission
including gearbox losses and the electrical generation losses. From the actuator disc theory the turbine
aerodynamic power output is

P ¼ 1
2
ρA2Cpc

3
x1. ð10:15bÞ

Under theoretical ideal conditions the maximum value of Cp¼ 0.593. According to Eggleston and
Stoddard (1987), rotor Cp values as high as 0.45 have been reported. Such high, real values of Cp relate
to very precise, smooth aerofoil blades and tip–speed ratios above 10. For most machines of good
design a value of Cp from 0.3 to 0.35 would be possible. With a drive train efficiency, ηd, and an elec-
trical generation efficiency, ηg, the output electrical power would be

Pel ¼ 1
2
ρA2Cpηgηdc

3
x1.

Example 10.4
Determine the size of rotor required to generate 20 kW of electrical power in a steady wind of 7.5 m/s. It can be
assumed that the air density, ρ¼ 1.2 kg/m3, Cp¼ 0.35, ηg¼ 0.75, and ηd¼ 0.85.

Solution
From this expression the disc area is

A2 ¼ 2Pel=


ρCpηgηdc

3
x1

� ¼ 2� 20� 103=


1.2� 0.35� 0.75� 0.85� 7.53

� ¼ 354.1 m2.

Hence, the diameter is 21.2 m.

10.6 POWER OUTPUT RANGE
The kinetic power available in the wind is

P0 ¼ 1
2
ρA2c

3
x1, ð10:10bÞ

where A2 is the disc area and cx1 is the velocity upstream of the disc. The ideal power generated by the
turbine can therefore be expected to vary as the cube of the wind speed. Figure 10.9 shows the idealised
power curve for a wind turbine, where the preceding cubic “law” applies between the so-called cut-inwind
speed and the rated wind speed at which themaximum power is first reached. The cut-in speed is the lowest
wind speed at which net (or positive) power is produced by the turbine. The rated wind speed generally
corresponds to the point at which the efficiency of energy conversion is close to its maximum.
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At wind speeds greater than the rated value, for most wind turbines, the power output is maintained
constant by aerodynamic controls [discussed in Section 10.13, Control Methods (Starting, Modulating,
and Stopping)]. The cut-out wind speed is the maximum permitted wind speed which, if reached,
causes the control system to activate braking, bringing the rotor to rest.

10.7 BLADE ELEMENT THEORY
Introduction
It has long been recognised that the work of Glauert (1935) in developing the fundamental theory of
aerofoils and airscrews is among the great classics of aerodynamic theory. Glauert also generalised the
theory to make it applicable to wind turbines and, with various modifications, it is still used in turbine
design. It is often referred to as the momentum vortex blade element theory or more simply as the blade
element method. However, the original work neglected an important aspect: the flow periodicity result-
ing from the turbine having a finite number of blades. Glauert assumed that elementary radial blade
sections could be analysed independently, which is valid only for a rotor with an infinite number of
blades. However, several approximate solutions are available (those of Prandtl and Tietjens, 1957,
and Goldstein, 1929), which enable compensating corrections to be made for a finite number of blades.
The simplest and most often used of these, called the Prandtl correction factor, will be considered later
in this chapter. Another correction that is considered is empirical and applies only to heavily loaded
turbines when the magnitude of the axial flow induction factor a exceeds the acceptable limit of the
momentum theory. According to Sharpe (1990) the flow field of heavily loaded turbines is not well
understood and the results of the empirical analysis mentioned are only approximate but better than
those predicted by the momentum theory.

The Vortex System of an Aerofoil
To derive a better understanding of the aerodynamics of the HAWT than was obtained earlier from
simple actuator disc theory, it is now necessary to consider the forces acting on the blades. We may
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Idealised Power Curve for a Wind Turbine
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regard each radial element of a blade as an aerofoil. The turbine is assumed to have a constant angular
speed Ω and is situated in a uniform wind of velocity cx1 parallel to the axis of rotation. The lift force
acting on each element must have an associated circulation (see, in section 3.4, Circulation and Lift)
around the blade. In effect there is a line vortex (or a set of line vortices) along the aerofoil span. The
line vortices that move with the aerofoil are called bound vortices of the aerofoil. As the circulation
along the blade length can vary, trailing vortices will spring from the blade and will be convected
downstream with the flow in approximately helical paths, as indicated for a two-bladed wind turbine
in Figure 10.10. It will be observed that the helices, as drawn, gradually expand in radius as they move
downstream (at the wake velocity) and the pitch between each sheet becomes smaller because of the
deceleration of the flow (see Figure 10.5).

Torque, τ and the Tangential Flow Induction Factor, a 0

From Newton’s laws of motion it is evident that the torque exerted on the turbine shaft must impart an
equal and opposite torque on the airflow equal to the rate of change of the angular momentum of the
flow. There is no rotation of the flow upstream of the blades or outside of the boundary stream tube.

According to Glauert, this rotational motion is to be ascribed partly to the system of trailing vortices
and partly to the circulation around the blades. Due to the trailing vortices, the flow in the plane of the
turbine blades will have an angular velocity a0Ω in the direction opposite to the blade rotation, and the
circulation around the blades will cause equal and opposite angular velocities to the flows immediately
upstream and downstream of the turbine blades. The sum of these angular velocity components, of

FIGURE 10.10

Schematic Drawing of the Vortex System Convecting Downstream of a Two-Bladed Wind Turbine Rotor
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course, is zero upstream of the blades, because no rotation is possible until the flow reaches the vortex
system generated by the blades. It follows from this that the angular velocity downstream of the blades
is 2a0Ω and the interference flow, which acts on the blade elements, will have the angular velocity a0Ω.
These deliberations will be of some importance when the velocity diagram for the turbine flow is con-
sidered (see Figure 10.11).

Glauert regarded the exact evaluation of the interference flow to be of great complexity because of
the periodicity of the flow caused by the blades. He asserted that for most purposes it is sufficiently
accurate to use circumferentially averaged values, equivalent to assuming that the thrust and the torque
carried by the finite number of blades are replaced by uniform distributions of thrust and torque spread
over the whole circumference at the same radius.

Consider such an elementary annulus of a HAWT of radius r from the axis of rotation and of radial
thickness dr. Let dτ be the element of torque equal to the rate of decrease in angular momentum of the
wind passing through the annulus. Thus,
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FIGURE 10.11

(a) Blade Element at Radius r Moving from Right to Left Showing the Various Velocity Components. The Relative
Velocity Impinging onto the Blade is w2 at Relative Flow Angle � and Incidence Angle α. (b) The Various Force
Components Acting on the Blade Section.
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dτ ¼ ðd _mÞ� 2a0Ωr2 ¼ ð2πrdrρcx2Þ� 2a0Ωr2 ð10:16aÞ
or

dτ ¼ 4πρΩcx1ð1� aÞa0r3dr: ð10:16bÞ
In the actuator disc analysis the value of a (denoted by a) is a constant over the whole of the disc. With
blade element theory the value of a is a function of the radius. This is a fact that must not be over-
looked. A constant value of a could be obtained for a wind turbine design with blade element theory,
but only by varying the chord and the pitch in some special way along the radius. This is not a useful
design requirement.

Assuming the axial and tangential induction factors a and a0 are functions of r we obtain an expres-
sion for the power developed by the blades by multiplying the above expression by Ω and integrating
from the hub rh to the tip radius R:

P ¼ 4πρΩ2cx1

Z R

rh

ð1� aÞa0r3dr. ð10:17Þ

Forces Acting on a Blade Element
Consider now a turbine with Z blades of tip radius R each of chord l at radius r and rotating at angular
speed Ω. The pitch angle of the blade at radius r is β measured from the zero lift line to the plane of
rotation. The axial velocity of the wind at the blades is the same as the value determined from actuator
disc theory, i.e., cx2¼ cx1(1� a), and is perpendicular to the plane of rotation.

Figure 10.11 shows the blade element moving from right to left together with the velocity vectors
relative to the blade chord line at radius r. The resultant of the relative velocity immediately upstream
of the blades is,

w ¼ ½c2x1ð1� aÞ2 þ ðΩrÞ2ð1þ a0Þ2�0:5, ð10:18Þ
and this is shown as impinging onto the blade element at angle � to the plane of rotation. It will be
noticed that the tangential component of velocity contributing to w is the blade speed augmented by
the interference flow velocity, a0Ωr. The following relations will be found useful in later algebraic
manipulations:

sin� ¼ cx2=w ¼ cx1ð1� aÞ=w, ð10:19Þ

cos� ¼ Ωrð1þ a0Þ=w, ð10:20Þ

tan� ¼ cx1
Ωr

1� a

1þ a0

� �
. ð10:21Þ

Figure 10.11 shows the lift force L and the drag force D drawn (by convention) perpendicular and par-
allel to the relative velocity at entry, respectively. In the normal range of operation, D although rather
small (1–2%) compared with L, is not to be entirely ignored. The resultant force, R, is seen as having a
component in the direction of blade motion. This is the force contributing to the positive power output
of the turbine.
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From Figure 10.11 the force per unit blade length in the direction of motion is

Y ¼ L sin��D cos�, ð10:22Þ
and the force per unit blade length in the axial direction is

X ¼ L cos�þ D sin�. ð10:23Þ

Lift and Drag Coefficients
We can define the lift and drag coefficients as

CL αð Þ ¼ L=
1
2
ρw2l

� �
, ð10:24Þ

CD αð Þ ¼ D=
1
2
ρw2l

� �
, ð10:25Þ

where, by the convention employed for an isolated aerofoil, w is the incoming relative velocity and l is
the blade chord. The coefficients CL and CD are functions of the angle of incidence, α¼�� β, as
defined in Figure 10.11, as well as the blade profile and blade Reynolds number. In this chapter the
angle of incidence is understood to be measured from the zero lift line (see Chapter 5, Section 5.15,
Lift Coefficient of a Fan Aerofoil) for which the CL versus α curve goes through zero. It is important
to note that Glauert (1935), when considering aerofoils of small camber and thickness, obtained a the-
oretical expression for the lift coefficient,

CL ¼ 2π sin α. ð10:26Þ
The theoretical slope of the curve of lift coefficient against incidence is 2π per radian (for small values of
α) or 0.11 per degree but, from experimental results, a good average generally accepted is 0.1 per degree
within the pre-stall regime. This very useful result will be used extensively in calculating results later.
However, measured values of the lift-curve slope reported by Abbott and von Doenhoff (1959) for a
number of NACA four- and five-digit series and NACA 6-series wing sections, measured at a Reynolds
number of 6 � 106, gave 0.11 per degree. But, these blade profiles were intended for aircraft wings, so
some departure from the rule might be expected when the application is the wind turbine.

Again, within the pre-stall regime, values of CD are small and the ratio of CD/CL is usually about
0.01. Figure 10.12 shows typical variations of lift coefficient CL plotted against incidence α and drag
coefficient CD plotted against CL for a wind turbine blade tested beyond the stall state. The blades of a
wind turbine may occasionally have to operate in post-stall conditions when CD becomes large; then
the drag term needs to be included in performance calculations. Details of stall modelling and formulae
for CD and CL under post-stall conditions are given by Eggleston and Stoddard (1987).

The correct choice of aerofoil sections is very important for achieving good performance. The
design details and the resulting performance are clearly competitive and not much information is actu-
ally available in the public domain. The U.S. Department of Energy (DOE) developed a series of aero-
foils specifically for wind turbine blades. These aerofoils were designed to provide the necessarily
different performance characteristics from the blade root to the tip while accommodating the structural
requirements. Substantially increased energy output (from 10 to 35%) from wind turbines with these
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new blades have been reported. The data are catalogued and is available to the U.S. wind industry.2

Many other countries have national associations, research organisations, and conferences relating to
wind energy and contact details are listed by Ackermann and Söder (2002).

Connecting Actuator Disc Theory and Blade Element Theory
The elementary axial force and elementary force exerted on one blade of length dr at radius r are

dX ¼ ðL cos�þ D sin�Þdr,
dτ ¼ rðL sin��D cos�Þdr.

For a turbine having Z blades and using the definitions for CL and CD given by eqns. (10.24) and
(10.25), we can write expressions for the elementary torque, power and thrust as

dτ ¼ 1
2
ρw2r CL sin��CD cos�ð ÞZldr; ð10:27Þ

dP ¼ Ωdτ ¼ 1
2
ρw2Ωr CL sin��CD cos�ð ÞZldr; ð10:28Þ

dX ¼ 1
2
ρw2 CL cos�þ CD sin�ð ÞZldr: ð10:29Þ

It is now possible to make a connection between actuator disc theory and blade element theory.
(Values of a and a0 are allowed to vary with radius in this analysis.) From eqn. (10.2), for an element
of the flow, we obtain

dX ¼ d _mðcx1 � cx3Þ ¼ d _mcx22a=ð1� aÞ. ð10:30Þ
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FIGURE 10.12

Typical Performance Characteristics for a Wind Turbine Blade, CL versus a and CD versus CL

2See Section 10.11, HAWT Blade Section Criteria, for more details.
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Equating eqns. (10.29) and (10.30) and with some rearranging, we get

a=ð1� aÞ ¼ ZlðCL cos�þ CD sin�Þ=ð8πr sin2�Þ. ð10:31Þ
Again, considering the tangential momentum, from eqn. (10.16a) the elementary torque is

dτ ¼ ð2πrdrÞρcx2ðrcθÞ.
Equating this with eqn. (10.27) and simplifying, we get

cx2cθ=w
2 ¼ ZlðCL sin��CD cos�Þ=ð4πrÞ. ð10:32Þ

Using eqn. (10.20) we find

cθ=w ¼ Ua0 cos�=½Uð1þ a0Þ� ¼ 2a0 cos�=ð1þ a0Þ
and, with eqn. (10.19), eqn. (10.32) becomes

a0= 1þ a0Þ ¼ ZlðCL sin��CD cos�Þ=ð8πr sin� cos�Þ.ð ð10:33Þ
Introducing a useful new dimensionless parameter, the blade loading coefficient,

λ ¼ ZlCL=ð8πrÞ, ð10:34Þ
into eqns. (10.31) and (10.33), we get

a=ð1� aÞ ¼ λðcos�þ ε sin�Þ=sin2�, ð10:35aÞ
a0=ð1þ a0Þ ¼ λðsin�� ε cos�Þ=ðsin� cos�Þ, ð10:36aÞ

ε ¼ CD

CL
ð10:37Þ

Tip–Speed Ratio
A most important non-dimensional parameter for the rotors of HAWTs is the tip–speed ratio, defined as

J ¼ ΩR
cx1

. ð10:38Þ

This parameter controls the operating conditions of a turbine and strongly influences the values of the
flow induction factors, a and a0.

Using eqn. (10.38) in eqn. (10.21) we write the tangent of the relative flow angle � as

tan� ¼ R

rJ

1� a

1þ a0

� �
. ð10:39Þ

Turbine Solidity
A primary non-dimensional parameter that characterises the geometry of a wind turbine is the blade
solidity, σ. The solidity is defined as the ratio of the blade area to the disc area:

σ ¼ ZAB=ðπR2Þ,
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where

AB ¼
Z

l rð Þdr ¼ 1
2
Rlav.

This is usually written as

σ ¼ Zlav=ð2πRÞ, ð10:40Þ
where lav is the mean blade chord.

Solving the Equations
The foregoing analysis provides a set of relations which can be solved by a process of iteration,
enabling a and a0 to be determined for any specified pitch angle β, provided that convergence is pos-
sible. To obtain faster solutions, we will use the approximation that ε ffi 0 in the normal efficient range
of operation (i.e., the pre-stall range). Equations (10.35a) and (10.36a) can now be written as

a=ð1� aÞ ¼ λ cot�= sin�, ð10:35bÞ

a0=ð1þ a0Þ ¼ λ= cos�. ð10:36bÞ
These equations are about as simple as it is possible to make them and they will be used to model some
numerical solutions.

Example 10.5
Consider a three-bladed HAWT with a rotor 30 m diameter, operating with a tip–speed ratio J¼ 5.0. The blade
chord is assumed to be constant at 1.0 m. Assuming that the drag coefficient is negligible compared with the
lift coefficient, determine using an iterative method of calculation the appropriate values of the axial and tangential
induction factors at r/R¼ 0.95 where the pitch angle β is 2°.

Solution
It is best to start the calculation process by putting a¼ a0 ¼ 0. The values, of course, will change progressively as
the iteration proceeds. Thus, using eqn. (10.39),

tan� ¼ ðR=rJÞð1� aÞ=ð1þ a0Þ ¼ 1=ð0:95� 5Þ ¼ 0:2105:

Therefore,

� ¼ 11:89� and α ¼ �� β ¼ 9.89�.

Using the approximation (see earlier) that CL¼ 0.1 � α¼ 0.989, then

λ ¼ ðZlCLÞ=ð8πrÞ ¼ 0:00884�CL ¼ 0:008743,

1=a ¼ 1þ ð1=λÞ sin� tan� ¼ 1þ 114.38� sin 11.89� tan 11.89 ¼ 5.962.
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Thus,

a ¼ 0:1677,

1=a0 ¼ ð1=λÞ cos�� 1 ¼ 110:9,

a0 ¼ 0:00902:

Using these new values of a and a0 in eqn. (10.39), the calculation is repeated iteratively until convergence is
achieved, usually taking another four or five cycles (but in calculations where if a > 0.3, many more iterations will
be needed). Finally, and with sufficient accuracy,

a ¼ 0.1925 and a0 ¼ 0.00685.

Also, �¼ 9.582° and CL¼ 0.1 � (�� β)¼ 0.758.
It may be advisable at this point for the student to devise a small computer program (if facilities are available)

or use a programmable hand calculator for calculating further values of a and a0. (Even a simple scientific calcu-
lator will yield results, although more tediously.) An outline of the algorithm, called the BEM method, is given in
Table 10.1, which is intended to become an important and useful time-saving tool. Further extension of this
method will be possible as the theory is developed.

10.8 THE BLADE ELEMENT MOMENTUM METHOD
All the theory and important definitions to determine the force components on a blade element have
been introduced and a first trial approach has been given to finding a solution in Example 10.5. The
various steps of the classical BEM model from Glauert are formalised in Table 10.1 as an algorithm for
evaluating a and a0 for each elementary control volume.

Spanwise Variation of Parameters
Along the blade span there is a significant variation in the blade pitch angle β, which is strongly linked
to the value of J and to a lesser extent to the values of the lift coefficient CL and the blade chord l.

Table 10.1 BEM Method for Evaluating a and a 0

Step Action Required

1 Initialise a and a0 with zero values

2 Evaluate the flow angle using eqn. (10.39)

3 Evaluate the local angle of incidence, α¼� � β

4 Determine CL and CD from tables (if available) or from formula

5 Calculate a and a0

6 Check on convergence of a and a0, if not sufficient go to step 2, else go to step 7

7 Calculate local forces on the element
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The ways both CL and l vary with radius are at the discretion of the turbine designer. In the previous
example the value of the pitch angle was specified and the lift coefficient was derived (together with
other factors) from it. We can likewise specify the lift coefficient, keeping the incidence below the
angle of stall and from it determine the angle of pitch. This procedure will be used in the next example
to obtain the spanwise variation of β for the turbine blade. It is certainly true that for optimum perfor-
mance the blade must be twisted along its length with the result that, near the root, there is a large pitch
angle. The blade pitch angle will decrease with increasing radius so that, near the tip, it is close to zero
and may even become slightly negative. The blade chord in the following examples has been kept con-
stant to limit the number of choices. Of course, most turbines in operation have tapered blades whose
design features depend upon blade strength as well as economic and aesthetic considerations.

Example 10.6
A three-bladed HAWT with a 30 m tip diameter is to be designed to operate with a constant lift coefficient
CL¼ 0.8 along the span, with a tip–speed ratio J¼ 5.0. Assuming a constant chord of 1.0 m, determine, using
an iterative method of calculation, the variation along the span (0.2 � r/R � 1.0) of the flow induction factors
a and a0 and the pitch angle β.

Solution
We begin the calculation at the tip, r¼ 15 m and, as before, take initial values for a and a0 of zero. Now,

λ¼ (ZlCL)/(8πr)¼ (3 � 0.8)/(8 � π � 15)¼ 0.006366, and 1/λ¼ 157.1;

tan �¼ (R/rJ)(1 – a)/(1þ a0)¼ 0.2, �¼ 1131°;

1/a¼ 1þ 157.1 � sin 11.31 � tan 11.31¼ 7.162, a¼ 0.1396;

1/a0 ¼ 157.1 � cos 11.31 – 1¼ 153.05, a0 ¼ 0.00653.

After a further five iterations (to obtain sufficient convergence) the result is

a ¼ 0:2054, a0 ¼ 0:00649, and β ¼ 0.97�.

The results of the computations along the complete span (0.2� r/R� 1.0) for a and a0 are shown in Table 10.2. It
is very evident that the parameter a varies markedly with radius, unlike the actuator disc application where a was
constant. The spanwise variation of the pitch angle β for CL¼ 0.8 (as well as for CL¼ 1.0 and 1.2 for comparison)
is shown in Figure 10.13. The large variation of β along the span is not surprising and is linked to the choice of the
value of J, the tip–speed ratio. The choice of inner radius ratio r/R¼ 0.2 was arbitrary. However, the contribution to
the power developed from choosing an even smaller radius would have been negligible.

Table 10.2 Summary of Results Following Iterations

r/R 0.2 0.3 0.4 0.6 0.8 0.9 0.95 1.0

� 42.29 31.35 24.36 16.29 11.97 10.32 9.59 8.973

β 34.29 23.35 16.36 8.29 3.97 2.32 1.59 0.97

a 0.0494 0.06295 0.07853 0.1138 0.1532 0.1742 0.1915 0.2054

a0 0.04497 0.0255 0.01778 0.01118 0.00820 0.00724 0.00684 0.00649

Note: CL¼ 0.8 along the span.
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Evaluating the Torque and Axial Force
The incremental axial force can be derived from eqns. (10.29) and (10.19) in the form

ΔX ¼ 1
2
ρZlRc2x1½ð1� aÞ= sin��2CL cos�Δ r=Rð Þ ð10:41Þ

and the incremental torque can be derived from eqns. (10.27) and (10.20) as

Δτ ¼ 1
2
ρZlΩ2R4½ð1þ a0Þ= cos��2ðr=RÞ3CL sin�Δ r=Rð Þ. ð10:42Þ

In determining numerical solutions, these two equations have proved to be more reliable in use than
some alternative forms that have been published. The two preceding equations will now be integrated
numerically.

Example 10.7
Determine the total axial force, the torque, the power, and the power coefficient of the wind turbine described in
Example 10.5. Assume that cx1¼ 7.5 m/s and that the air density ρ¼ 1.2 kg/m3.

Solution
Evaluating the elements of axial force ΔX having previously determined the mid-ordinate values of a, a0, and � to
gain greater accuracy (the relevant data is shown in Table 10.3):

ΔX ¼ 1
2
ρZlRc2x1½ð1� aÞ= sin��2CL cos�Δ r=Rð Þ,
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Variation of Blade Pitch Angle β with Radius Ratio r/R for CL¼ 0.8, 1.0 and 1.2 (See Example 10.6 for Conditions)
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where, in Table 10.3, Var. 1¼ [(1� a)/sin �]2CLcos�Δ(r/R):X
Var.1 ¼ 6:9682:

Then with 1
2 ρZlRc

2
x1 ¼ 1

2 � 1.2� 3� 15� 7.52 ¼ 1518.8, we obtain

X ¼ 1518.8
X

Var.1 ¼ 10, 583 N.

In Table 10.4, Var. 2¼ [(1þ a0)/cos �]2(r/R)3CLsin�Δ(r/R),X
Var.2 ¼ 47:509� 10�3

and with 1
2 ρZlΩ

2R4¼ 0.5695 � 106,

τ ¼ 27:058� 103 Nm.

Hence, the power developed is P¼ τΩ¼ 67.644 kW. The power coefficient is, see eqn. (10.11), is

Cp ¼ P

P0
¼ P

0:5ρA2c3x1
¼ P

1:789� 105
¼ 0.378

and the relative power coefficient is, see eqn. (10.12b),

ζ ¼ 27
16

Cp ¼ 0:638:

Table 10.3 Data Used for Summing Axial Force

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.95

Δr/R 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100

a 0.05565 0.0704 0.0871 0.1053 0.1248 0.1456 0.1682 0.1925

� (deg) 36.193 27.488 21.778 17.818 14.93 12.736 10.992 9.5826

Var. 1 0.1648 0.2880 0.4490 0.6511 0.8920 1.172 1.4645 1.8561

Table 10.4 Data Used for Summing Torque

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

a0 0.0325 0.02093 0.0155 0.0123 0.0102 0.0088 0.0077 0.00684

� 36.19 27.488 21.778 17.818 14.93 12.736 10.992 9.5826

(r/R)3 0.0156 0.0429 0.0911 0.1664 0.2746 0.4219 0.6141 0.8574

Var. 2
(�10�3)

1.206 2.098 3.733 4.550 6.187 7.959 9.871 11.905
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Example 10.8
The relationship between actuator disc theory and blade element theory can be more firmly established by eval-
uating the power again, this time using the actuator disc equations.

Solution
To do this we need to determine the equivalent constant value for a. From eqn. (10.13),

Cx ¼ 4a 1� að Þ ¼ X

�
1
2
ρc2x1A2

� �
,

with X¼ 10, 583 N and 1
2 ρc

2
x1A2 ¼ 1

2 � 1.2� 7.52 � π� 152 � 23, 856, we obtain

Cx ¼ 10, 583=23, 856 ¼ 0:4436,

að1� aÞ ¼ 0:4436=4 ¼ 0:1109:

Solving the quadratic equation, we get a ¼ 0:12704.
From eqn. (10.10a), P¼ 2ρA2c3x1að1�αÞ2, and substituting values,

P ¼ 69.286 kW,

and this agrees fairly well with the value obtained in Example 10.7.
Note: The lift coefficient used in this example, admittedly modest, was selected purely to illustrate the method

of calculation. For an initial design, the equations just developed would suffice but some further refinements can
be added. An important refinement concerns the Prandtl correction for the number of blades.

Correcting for a Finite Number of Blades
So far, the analysis has ignored the effect of having a finite number of blades. The fact is that at a fixed
point the flow fluctuates as a blade passes by. The induced velocities at the point are not constant with
time. The overall effect is to reduce the net momentum exchange and the net power of the turbine.
Some modification of the analysis is needed and this is done by applying a blade tip correction factor.
Several solutions are available: (i) an exact one due to Goldstein (1929), represented by an infinite ser-
ies of modified Bessel functions, and (ii) a closed form approximation due to Prandtl and Tietjens
(1957). Both methods give similar results and Prandtl’s method is the one usually preferred.

Prandtl’s Correction Factor
The mathematical details of Prandtl’s analysis are beyond the scope of this book, but the result is
usually expressed as

F ¼ ð2=πÞcos�1½expð�πd=sÞ�, ð10:43Þ
where, as shown in Figure 10.14, s is the pitchwise distance between the successive helical vortex
sheets and d¼R� r. From the geometry of the helices,

s ¼ ð2πR=ZÞ sin�,
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where sin �¼ cx2/w. Thus,

s ¼ 2πð1� aÞRcx1=ðwZÞ,

πd=s ¼ 1
2
Z 1� r=Rð Þw=cx2 ¼ 1

2
Z 1� r=Rð Þ= sin�.

ð10:44aÞ

This can be evaluated with sufficient accuracy and perhaps more conveniently with the approximation,

πd=s ¼ 1
2
Z 1� r=Rð Þð1þ J2Þ0:5. ð10:44bÞ

The circulation at the blade tips reduces to zero because of the vorticity shed from it, in the same way as at
the tip of an aircraft wing. These expressions ensure that F becomes zero when r¼R but rapidly increases
towards unity with decreasing radius.

The variation of F¼F(r/R) is shown in Figure 10.15 for J¼ 5 and Z¼ 2, 3, 4, and 6. It will be clear
from the graph and the preceding equations that the greater the pitch s and the smaller the number of
blades Z, the bigger will be the variation of F (from unity) at any radius ratio. In other words the ampli-
tude of the velocity fluctuations will be increased.

Prandtl’s tip correction factor is applied directly to each blade element, modifying the elementary
axial force, obtained from eqn. (10.13),

dX ¼ 4πρað1� aÞrc2x1dr
to become

dX ¼ 4πρað1� aÞrc2x1Fdr ð10:45Þ
and the elementary torque, eqn. (10.16b),

dτ ¼ 4πρΩcx1ð1� aÞa0r3dr
is modified to become

dτ ¼ 4πρΩcx1ð1� aÞa0Fr3dr. ð10:46Þ
Following the reduction processes that led to eqns. (10.35) and (10.36), the last two numbered equa-
tions give the following results:
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FIGURE 10.14

Prandtl Tip Loss Model Showing the Distances Used in the Analysis
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a=ð1� aÞ ¼ λðcos�þ ε sin�Þ=ðF sin2�Þ, ð10:47aÞ

a0=ð1þ a0Þ ¼ λðsin�� ε cos�Þ=ðF sin� cos�Þ. ð10:48aÞ
The application of the Prandtl tip correction factor to the elementary axial force and elementary torque
equations has some important implications concerning the overall flow and the interference factors.
The basic meaning of eqn. (10.45) is

dX ¼ d _mð2aFcx1Þ,
i.e., the average axial induction factor in the far wake is 2aF when the correction factor is applied as
opposed to 2a when it is not. Note also that, in the plane of the disc (or the blades), the average induc-
tion factor is aF, and that the axial velocity becomes

cx2 ¼ cx1ð1� aFÞ.
From this we see that at the tips of the blades cx2¼ cx1, because F is zero at that radius.

Note: It was explained earlier that the limit of application of the theory occurs when a → 0.5, i.e.,
cx2¼ cx1(1�2a), and, as the earlier calculations have shown, a is usually greatest towards the blade
tip. However, with the application of the tip correction factor F, the limit state becomes aF¼ 0.5.
As F progressively reduces to zero as the blade tip is approached, the operational result gives, in effect,
some additional leeway in the convergence of the iterative procedure discussed earlier.
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Performance Calculations with Tip Correction Included
In accordance with the previous approximation (to reduce the amount of work needed), ε is

ascribed the value zero, simplifying the preceding equations for determining a and a0 to

a=ð1� aÞ ¼ λ cos�=ðF sin2�Þ, ð10:47bÞ

a0=ð1þ a0Þ ¼ λ=ðF cos�Þ. ð10:48bÞ
When using the BEM method an extra step is required in Table 10.1, between steps 1 and 2, to calcu-
late F, and it is necessary to calculate a new value of CL for each iteration that, consequently, changes
the value of the blade loading coefficient λ as the calculation progresses.

Example 10.9
This example repeats the calculations of Example 10.7 using the same blade specification [i.e., the pitch angle
β¼ β(r)] but now it includes the Prandtl correction factor. The results of the iterations to determine a, a0, �,
and CL and used as data for the summations are shown in Table 10.5. The details of the calculation for one
mid-ordinate radius (r/R¼ 0.95) are shown first to clarify the process.

Solution
At r/R¼ 0.95, F¼ 0.522, using eqns. (10.44b) and (10.43). Thus, with Z¼ 3, l¼ 1.0,

F=λ ¼ 62:32=CL.

In the BEM method we start with a¼ a0 ¼ 0 so, initially, tan �¼ (R/r)/J¼ (1/0.95)/5¼ 0.2105. Thus,
�¼ 11.89° and CL¼ (�� β)/10¼ (11.89�1.59)/10¼ 1.03. Hence, F/λ¼ 60.5. With eqns. (10.47a) and
(10.48a) we compute a¼ 0.2759 and a0 ¼ 0.0172.

The next cycle of iteration gives �¼ 8.522, CL¼ 0.693, F/λ¼ 89.9, a¼ 0.3338, and a0 ¼ 0.0114. Continuing
the series of iterations we finally obtain

a ¼ 0:351, a0 ¼ 0.010, � ¼ 7.705, and CL ¼ 0.6115.

For the elements of force,

ΔX ¼ 1
2
ρZlRc2x1½ð1� aÞ= sin��2 cos�CLΔ r=Rð Þ.

Table 10.5 Summary of Results for All Mid-ordinates

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

F 1.0 1.0 0.9905 0.9796 0.9562 0.9056 0.7943 0.522

CL 0.8 0.8 0.796 0.790 0.784 0.7667 0.7468 0.6115

a 0.055 0.0704 0.0876 0.1063 0.1228 0.1563 0.2078 0.3510

a’ 0.0322 0.0209 0.0155 0.01216 0.0105 0.0093 0.00903 0.010

� (deg) 36.4 27.49 21.76 17.80 14.857 12.567 10.468 7.705

Var. 1 0.1643 0.2878 0.4457 0.6483 0.8800 1.1715 1.395 0.5803
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Where, in Table 10.5, Var. 1¼ [(1� a)/sin �]2 cos �CLΔ(r/R),X
Var.1 ¼ 6:3416:

As in Example 10.6, 1
2 ZlRc

2
x1 ¼ 1518:8, then

X ¼ 1518.8� 6.3416 ¼ 9, 631 N.

Evaluating the elements of the torque using eqn. (10.42), where, in Table 10.6, Var. 2¼ [(1þ a0)/
cos �]2(r/R)3CL sin �Δ(r/R),X

Var.2 ¼ 40:707� 10�3 and
1
2
ρZlΩ2R4 ¼ 0:5695� 106,

then

τ ¼ 23.183� 103 Nm.

Hence, P¼ τΩ¼ 57.960 kW, CP¼ 0.324, and ζ¼ 0.547.
These calculations, summarised in Table 10.7, demonstrate that quite substantial reductions occur in both the

axial force and power output as a result of including the Prandtl tip loss correction factor.

10.9 ROTOR CONFIGURATIONS
Clearly, with so many geometric design and operational variables to consider, it is not easy to give
general rules about the way performance of a wind turbine will be effected by the values of parameters
other than (perhaps) running large numbers of computer calculations. The variables for the turbine
include the number of blades, blade solidity, blade taper and twist, as well as tip–speed ratio.

Blade Planform
In all the preceding worked examples a constant value of chord size was used, mainly to simplify pro-
ceedings. The actual planform used for the blades of most HAWTs is tapered, the degree of taper is

Table 10.6 Data Used for Summing Torque

Mid r/R 0.250 0.350 0.450 0.550 0.650 0.750 0.850 0.950

(r/R)3 0.01563 0.04288 0.09113 0.1664 0.2746 0.4219 0.6141 0.7915

Var. 2 �10�3 1.2203 2.097 3.215 4.541 6.033 7.526 8.773 7.302

Table 10.7 Summary of Results

Axial force, kN Power, kW CP ζ

Without tip correction 10.583 67.64 0.378 0.638

With tip correction 9.848 57.96 0.324 0.547
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chosen for structural, economic, and, to some degree, aesthetic reasons. If the planform is known or
one can be specified, the calculation procedure developed previously, i.e., the BEM method, can be
easily modified to include the variation of blade chord as a function of radius.

In a following section, Glauert’s analysis is extended to determine the variation of the rotor blade
planform under optimum conditions.

Effect of Varying the Number of Blades
A first estimate of overall performance (power output and axial force) based on actuator disc theory
was given earlier. The choice of the number of blades needed is one of the first items to be considered.
Wind turbines have been built with anything from 1 to 40 blades. The vast majority of HAWTs, with
high tip–speed ratios, have either two or three blades. For purposes such as water pumping, rotors with
low tip–speed ratios (giving high starting torques) employ a large number of blades. The chief consid-
erations to be made in deciding on the blade number, Z, are the design tip–speed ratio, J, the effect on
the power coefficient, CP, as well as other factors such as weight, cost, structural dynamics, and fatigue
life, which we cannot consider in this short chapter.

Tangler (2000) has reviewed the evolution of the rotor and the design of blades for HAWTs, com-
menting that, for large commercial machines, the upwind, three-bladed rotor is the industry accepted
standard. Most large machines built since the mid-1990s are of this configuration. The blade number
choice appears to be guided mainly by inviscid calculations presented by Rohrback and Worobel
(1977) and Miller, Dugundji et al. (1978). Figure 10.16 shows the effect on the power coefficient CP

of blade, number for a range of tip–speed ratio, J. It is clear, on the basis of these results, that there is
a significant increase in CP in going from one blade to two blades, rather less gain in going from two
to three blades, and so on for higher numbers of blades. In reality, the apparent gains in CP would be
quickly cancelled when blade frictional losses are included with more than two or three blades.

Tangler (2000) indicated that considerations of rotor noise and aesthetics strongly support the
choice of three blades rather than two or even one. Also, for a given rotor diameter and solidity, a
three-bladed rotor will have two thirds the blade loading of a two-bladed rotor resulting in lower impul-
sive noise generation.

Effect of Varying Tip–Speed Ratio
The tip–speed ratio J is generally regarded as a parameter of some importance in the design perfor-
mance of a wind turbine. So far, all the examples have been determined with one value of J and it
is worth finding out how performance changes with other values of the tip–speed ratio. Using the pro-
cedure outlined in Example 10.6, assuming zero drag (ε¼ 0) and ignoring the correction for a finite
number of blades, the overall performance (axial force and power) has been calculated for CL¼ 0.6,
0.8, and 1.0 (with l¼ 1.0) for a range of J values. Figure 10.17 shows the variation of the axial
force coefficient CX plotted against J for the three values of CL and Figure 10.18 the corresponding
values of the power coefficient CP plotted against J. A point of particular interest is that when CX

is replotted as CX/(JCL) all three sets of results collapse onto one straight line, as shown in Figure
10.19. The main interest in the axial force would be its effect on the bearings and on the supporting
structure of the turbine rotor. A detailed discussion of the effects of both steady and unsteady loads
acting on the rotor blades and supporting structure of HAWTs is given by Garrad (1990).
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Note: The range of these calculated results is effectively limited by the non-convergence of the
value of the axial flow induction factor a at, or near, the blade tip at high values of J. The largeness
of the blade loading coefficient, λ¼ ZlCL/(8πr), is wholly responsible for this non-convergence of a. In
practical terms, λ can be reduced by decreasing CL or by reducing l (or by a combination of these).
Also, use of the tip correction factor in calculations will extend the range of J for which convergence
of a can be obtained. The effect of any of these measures will be to reduce the amount of power devel-
oped. However, in the examples throughout this chapter, to make valid comparisons of performance
the values of lift coefficients and chord are fixed. It is of interest to note that the curves of the
power coefficient CP all rise to about the same value, approximately 0.48, where the cutoff due to
non-convergence occurs.

Rotor Optimum Design Criteria
Glauert’s momentum analysis provides a relatively simple yet accurate framework for the preliminary
design of wind turbine rotors. An important aspect of the analysis not yet covered was his development
of the concept of the “ideal windmill” that provides equations for the optimal rotor. In a nutshell, the
analysis gives a preferred value of the product CLl for each rotor blade segment as a function of the
local speed ratio j defined by

j ¼ Ωr
cx1

¼ r

R

� �
J: ð10:49Þ

By choosing a value for either CL or l enables a value for the other variable to be determined from the
known optimum product CLl at every radius.

The analysis proceeds as follows. Assuming CD¼ 0, we divide eqn. (10.36b) by eqn. (10.35b) to
obtain

a0ð1� aÞ
að1þ a0Þ ¼ tan2�. ð10:50Þ

Also, from eqns. (10.39) and (10.49), we have

tan� ¼ ð1� aÞ
jð1þ a0Þ . ð10:51Þ

We now substitute for tan � in eqn. (10.50) to obtain

1
j2
¼ a0ð1þ a0Þ

að1� aÞ . ð10:52Þ

Thus, at any radius r, the value of j is constant for a fixed tip–speed ratio J, and the right-hand side is
likewise constant. Looking again at eqn. (10.17), for specific values of cx1 and Ω, the power output is a
maximum when the product (1� a)a0 is a maximum. Differentiating this product and setting the result
to zero, we obtain

a0 ¼ da0

da
1� að Þ. ð10:53Þ
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From eqn. (10.52), after differentiating and some simplification, we find

j2 1þ 2a0ð Þ da
0

da
¼ 1� 2a. ð10:54Þ

Substituting eqn. (10.53) into eqn. (10.54) we get

j2ð1þ 2a0Þa0 ¼ ð1� 2aÞð1� aÞ.
Combining this equation with eqn. (10.52) we obtain

1þ 2a0

1þ a0
¼ 1� 2a

a
.

Solving this equation for a0,

a0 ¼ 1� 3a
4a� 1

. ð10:55Þ

Substitute eqn. (10.55) back into eqn. (10.52) and using 1 þ a0 ¼ a/(4a� 1), we get

a0j2 ¼ ð1� aÞð4a� 1Þ. ð10:56Þ
Equations (10.53) and (10.55) can be used to determine the variation of the interference factors a

and a0 with respect to the coordinate j along the turbine blade length. After combining eqn. (10.55)
with (10.56) we obtain

j ¼ 4a� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

1� 3a

r
. ð10:57Þ

Equation (10.57), derived for these ideal conditions, is valid only over a very narrow range of
a, i.e., 14 < a < 1

3. It is important to keep in mind that optimum conditions are much more restrictive
than general conditions. Table 10.8 gives the values of a0 and j for increments of a in this range (as
well as � and λ). It will be seen that for large values of j the interference factor a is only slightly less
than 1

3 and a0 is very small. Conversely, for small values of j the interference factor a approaches the
value 1

4 and a0 increases rapidly.

Table 10.8 Relationship Between a0, a, �, j, and λ at Optimum Conditions

a a0 j � (deg) λ

0.260 5.500 0.0734 57.2 0.4583

0.270 2.375 0.157 54.06 0.4131

0.280 1.333 0.255 50.48 0.3637

0.290 0.812 0.374 46.33 0.3095

0.300 0.500 0.529 41.41 0.2500

0.310 0.292 0.753 35.33 0.1842

0.320 0.143 1.150 27.27 0.1111

0.330 0.031 2.63 13.93 0.0294

0.333 0.003 8.574 4.44 0.0030
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The flow angle � at optimum power conditions is found from eqns. (10.50) and (10.55),

tan2� ¼ a0ð1� aÞ
að1þ a0Þ ¼

ð1� 3aÞð1� aÞ
a2

,

therefore,

tan� ¼ 1
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 3aÞð1� aÞ

p
. ð10:58Þ

Again, at optimum conditions, we can determine the blade loading coefficient λ in terms of the flow
angle �. Starting with eqn. (10.55), we substitute for a0 and a using eqns. (10.36b) and (10.35b). After
some simplification we obtain

λ2 ¼ sin2�� 2λ cos�.

Solving this quadratic equation we obtain a relation for the optimum blade loading coefficient as a
function of the flow angle �,

λ ¼ 1� cos� ≡
ZlCL

8πr
. ð10:59Þ

Returning to the general conditions, from eqn. (10.51) together with eqns. (10.35b) and (10.36b), we
obtain

tan� ¼ 1ð1� aÞ
jð1þ a0Þ ¼

1
j

a

a0
� �

tan2�,

therefore,
j ¼ a

a0
� �

tan�. ð10:60Þ

Rewriting eqns. (10.35b) and (10.36b) in the form

1
a
¼ 1þ 1

λ
sin� tan� and

1
a0

¼ 1
λ
cos�� 1

and substituting into eqn. (10.60) we get

j ¼ sin�
cos�� λ

λ cos�þ sin 2�

� �
. ð10:61Þ

Reintroducing optimum conditions with eqn. (10.59),

j ¼ sin�ð2 cos�� 1Þ
ð1� cos�Þ cos�þ sin 2�

,

therefore,

j ¼ sin�ð2 cos�� 1Þ
ð1þ 2 cos�Þð1� cos�Þ , ð10:62Þ

jλ ¼ sin�ð2 cos�� 1Þ
1þ 2 cos�

. ð10:63Þ
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Some values of λ are shown in Table 10.8. Equation (10.62) enables j to be calculated directly from
�. These equations also allow the optimum blade layout in terms of the product of the chord l and the
lift coefficient CL (for CD¼ 0) to be determined. By ascribing a value of CL at a given radius the cor-
responding value of l can be determined.

Example 10.10
A three-bladed HAWT, with a 30 m tip diameter, is to be designed for optimum conditions with a constant lift
coefficient CL of unity along the span and with a tip–speed ratio J¼ 5.0. Determine a suitable chord distribution
along the blade, from a radius of 3 m to the blade tip, satisfying these conditions.

Solution
It is obviously easier to input values of � to determine the values of the other parameters than attempting the
reverse process. To illustrate the procedure, choose �¼ 10°, and so we determine jλ¼ 0.0567, using eqn.
(10.63). From eqn. (10.59) we determine λ¼ 0.0152 and then find j¼ 3.733. Now

j ¼ Ωr
cx1

¼ J
r

R

� �
¼ 5

15
r,

r ¼ 3j ¼ 11:19 m.

As

jλ ¼ J
r

R

� �
¼ ZlCL

8πr
¼ J

R

ZlCL

8π
¼ l

8π
,

after substituting J¼ 5, R¼ 15 m, Z¼ 3, CL¼ 1.0. Thus,

l ¼ 8π� 0.0567 ¼ 1.425 m

and Table 10.9 shows the optimum blade chord and radius values.

Figure 10.20 shows the calculated variation of blade chord with radius. The fact that the chord
increases rapidly as the radius is reduced would suggest that the blade designer would ignore optimum
conditions at some point and accept a slightly reduced performance. A typical blade planform (for the
Micon 65/13 HAWT; Tangler et al. 1990) is also included in this figure for comparison.

Table 10.9 Values of Blade Chord and Radius (Optimum Conditions)

� (deg) j 4jλ r (m) l (m)

30 1.00 0.536 3.0 3.368

20 1.73 0.418 5.19 2.626

15 2.42 0.329 7.26 2.067

10 3.733 0.2268 11.2 1.433

7.556 5 0.1733 15 1.089
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10.10 THE POWER OUTPUT AT OPTIMUM CONDITIONS
Equation (10.17) expresses the power output under general conditions, i.e., when the rotational inter-
ference factor a0 is retained in the analysis. From this equation the power coefficient can be written as

CP ¼ P

�
1
2
πρR2c3x1

� �
¼ 8

J2

Z J

jh

ð1� aÞa0j3dj.

This equation converts to optimum conditions by substituting eqn. (10.56) into it, i.e.,

CP ¼ 8
J2

Z J

jh

ð1� aÞ2ð4a� 1Þjdj. ð10:64Þ

where the limits of the integral are changed to jh and J¼ΩR/cx1. Glauert (1935) derived values for CP

for the limit range j¼ 0 to J (from 0.5 to 10) by numerical integration and the relative maximum power
coefficient ζ. These values are shown in Table 10.10. So, to obtain a large fraction of the possible
power it is apparent that the tip–speed ratio J should not be too low.
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FIGURE 10.20

Examples of Variation of Chord Length with Radius: (a) Optimal Variation of Chord Length with Radius, According
to Glauert Theory, for CL¼ 1.0; (b) a Typical Blade Planform (Used for the Micon 65/13 HAWT)

Table 10.10 Power Coefficients at Optimum Conditions

J ζ CP J ζ CP

0.5 0.486 0.288 2.5 0.899 0.532

1.0 0.703 0.416 5.0 0.963 0.570

1.5 0.811 0.480 7.5 0.983 0.582

2.0 0.865 0.512 10.0 0.987 0.584
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10.11 HAWT BLADE SECTION CRITERIA
The essential requirements of turbine blades clearly relate to aerodynamic performance, structural
strength and stiffness, ease of manufacture, and ease of maintenance in that order. It was assumed,
in the early days of turbine development, that blades with high lift and low drag were the ideal choice
with the result that standard aerofoils, e.g., NACA 44XX, NACA 230XX, (where the XX denotes
thickness to chord ratio, as a percentage), suitable for aircraft were selected for wind turbines. The
aerodynamic characteristics and shapes of these aerofoils are summarised by Abbott and von Doenhoff
(1959).

The primary factor influencing the lift–drag ratio of a given aerofoil section is the Reynolds num-
ber. The analysis developed earlier showed that optimal performance of a turbine blade depends on the
product of blade chord and lift coefficient, lCL. When other turbine parameters such as the tip–speed
ratio J and radius R are kept constant, the operation of the turbine at a high value of CL thus allows the
use of narrower blades. Using narrower blades does not necessarily result in lower viscous losses,
instead the lower Reynolds number often produces higher values of CD. Another important factor to
consider is the effect on the blade structural stiffness, which decreases sharply as thickness decreases.
The standard aerofoils just mentioned also suffered from a serious fault; namely, a gradual performance
degradation from roughness effects consequent on leading-edge contamination. Tangler commented
that “the annual energy losses due to leading-edge roughness are greatest for stall-regulated3 rotors.”
Figure 10.21, adapted from Tangler et al. (1990) illustrates the surprising loss in power output of a
stall-regulated, three-bladed rotor on a medium scale (65 kW) turbine. The loss in performance is pro-
portional to the reduction in maximum lift coefficient along the blade. The roughness also degrades the
aerofoil’s lift-curve slope and increases profile drag, further contributing to losses. Small scale wind
turbines are even more severely affected because their lower elevation allows the accretion of more

3Refer to Section 10.13, Control Methods.
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Power Curves from Field Tests for NACA 4415-4424 Blades (Adapted from Tangler, 1990, Courtesy of NREL)
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insects and dust particles and the debris thickness is actually a larger fraction of the leading-edge
radius. Some details of the effect of blade fouling on a small scale (10 m diameter) rotor are given
by Lissaman (1998). Estimates of the typical annual energy loss (in the United States) caused by
this increased roughness are 20–30%. The newer NREL turbine blades described in the next section
are much less susceptible to the effects of fouling.

10.12 DEVELOPMENTS IN BLADE MANUFACTURE
Snel (1998) remarked, “in general, since blade design details are of a competitive nature, not much
information is present in the open literature with regard to these items.” Fortunately, for progress, effi-
ciency, and the future expansion of wind energy power plants, the progressive and enlightened policies
of the U.S. Department of Energy, NASA, and the National Renewable Energy Laboratory allowed the
release of much valuable knowledge to the world concerning wind turbines. Some important aspects
gleaned from this absorbing literature follows.

Tangler and Somers (1995) outlined the development of special-purpose aerofoils for HAWTs,
which began as a collaborative venture between the National Renewable Energy Laboratory
(NREL) and Airfoils Incorporated. Seven families of blades comprising 23 aerofoils were planned
for rotors of various sizes. These aerofoils were designed to have a maximum CL that was largely
insensitive to roughness effects. This was achieved by ensuring that the boundary layer transition
from laminar to turbulent flow on the suction surface of the aerofoil occurred very close to the leading
edge, just before reaching the maximum value of CL. These new aerofoils also have low values of CD

in the clean condition because of the extensive laminar flow over them. The tip–region aerofoils typi-
cally have close to 50% laminar flow on the suction surface and over 60% laminar flow on the pressure
surface.

The preferred choice of blade from the NREL collection of results rather depends on whether the
turbine is to be regulated by stall, by variable blade pitch or by variable rotor speed. The different
demands made of the aerofoil from the hub to the tip preclude the use of a single design type. The
changing aerodynamic requirements along the span are answered by specifying different values of
lift and drag coefficients (and, as a consequence, different aerofoil sections along the length). For
stall-regulated turbines, a limited maximum value of CL in the blade tip region is of benefit to passively
control peak rotor power. Figures 10.22 to 10.25 show families of aerofoils for rotors originally desig-
nated as “small-, medium-, large-, and very large-sized” HAWTs,4 designed specifically for turbines
having low values of maximum blade tip CL. A noticeable feature of these aerofoils is the substantial
thickness–chord ratio of the blades, especially at the root section, needed to address the structural
requirements of “flap stiffness” and the high root bending stresses.

According to Tangler (2000) the evolutionary process of HAWTs is not likely to deviate much from
the now firmly established three-bladed, upwind rotors, which are rapidly maturing in design. Further
refinements, however, can be expected of the various configurations and the convergence towards the
best of the three options of stall-regulated, variable-pitch, and variable-speed blades. Blades on large,

4With the top end size of HAWTs growing ever larger with time, the size categories of “large” or “very large” used in the
1990s are rather misleading and, perhaps, better described by stating either the relevant diameter or power range.
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stall-regulated wind turbines with movable speed control tips may be replaced by variable-pitch blades
for more refined peak power control and reliability.

With the very large HAWTs [i.e., 104 m diameter, refer to Figure 10.4(a)] being brought into use,
new blade section designs and materials will be needed. Mason (2004) has described “lightweight”
blades being made from a carbon/glass fibre composite for the 125 m diameter, 5 MW HAWT to
be deployed in the North Sea as part of Germany’s first deepwater off-shore project.

10.13 CONTROL METHODS (STARTING, MODULATING, AND STOPPING)
Referring to Figure 10.9, the operation of a wind turbine involves starting the turbine from rest, reg-
ulating the power while the system is running, and stopping the turbine if and when the wind speed
becomes excessive. Startup of most wind turbines usually means operating the generator as a motor
to overcome initial resistive torque until sufficient power is generated at “cut-in” speed assuming,
of course, that a source of power is available.

Blade Pitch Control
The angle of the rotor blades is actively adjusted by the machine control system. This, known as blade
pitch control, has the advantage that the blades have built-in braking, which brings the blades to rest.
Pitching the whole blade requires large actuators and bearings, increasing the weight and expense of
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FIGURE 10.22

Thick Aerofoil Family for HAWTs of Diameter 2 to 11 m (P¼ 2 to 20 kW) (Courtesy NREL)
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the system. One solution to this problem is to use partial span blade pitch control where only the outer
one third of the blade span is pitched.

Passive or Stall Control
The aerodynamic design of the blades (i.e., the distribution of the twist and thickness along the blade
length) varies in such a way that blade stall occurs whenever the wind speed becomes too high. The
turbulence generated under stall conditions causes less energy to be transferred to the blades minimis-
ing the output of power at high wind speeds.

According to Armstrong and Brown (1990) there is some competition between the advocates of the
various systems used in commercial wind farms. The classical European machines are usually stall
regulated, while most American designs are now either pitch regulated or, for large turbines, use
some form of aileron control.
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FIGURE 10.23

Thick Aerofoil Family for HAWTs of Diameter 11 to 21 m (P¼ 20 to 100 kW) (Courtesy NREL)

10.13 Control Methods (Starting, Modulating, and Stopping) 401



Aileron Control
Aerodynamic control surfaces have been investigated by the U.S. DOE and NASA as an alternative to
full blade-pitch control. The aileron control system has the potential to reduce cost and weight of the
rotors of large HAWTs. The control surfaces consist of a moveable flap built into the outer part of the
trailing edge of the blade, as shown in Figure 10.26(a). Although they appear similar to the flaps and
ailerons used on aircraft wings, they operate differently. Control surfaces on an aircraft wing deflect
downwards towards the high-pressure surface in order to increase lift during takeoff and landing,
whereas on a wind turbine blade the flaps deflect towards the low-pressure surface (i.e., downwind
side) to reduce lift and cause a braking effect. Figure 10.26(b) shows sketches of two typical control
surface arrangements in the fully deflected position, included in a paper by Miller and Sirocky (1985).
The configuration marked plain was found to have the best braking performance. The configuration
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FIGURE 10.24

Thick Aerofoil Family for HAWTs of Diameter 21 to 35 m (P¼ 100 to 400 kW) (Note: Blade Profile for S815 Was
Not Available) (Courtesy NREL)
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marked balanced has both a low pressure and a high pressure control surface, which helps to reduce the
control torque.

Ailerons change the lift and drag characteristics of the basic blade aerofoil as a function of the
deflection angle. Full-scale field tests were conducted on the Mod-O wind turbine5 with ailerons of
20% chord and 38% chord. Results from loss of load to shutdown showed that the 38% chord ailerons
were the better aerodynamic braking device than the 20% chord ailerons. Also, the 38% chord ailerons
effectively regulated the power output over the entire operating range of the Mod-O turbine. Figure
10.27 shows the variation of the lift and drag coefficients for the 38% chord ailerons set at 0°,
�60°, and �90°.

Although wind tunnel tests normally present results in terms of lift and drag coefficients, Miller and
Sirocky (1985) wisely chose to represent their aileron-controlled wind turbine results in terms of a

5Details of the Mod-O wind turbine are given in Divone (1998).
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FIGURE 10.25

Thick Aerofoil Family for HAWTs with D> 36 m (Blade Length 15 to 25 m, P¼ 400 to 1000 kW) (Courtesy NREL)
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Aileron Control Surfaces: (a) Showing Position of Ailerons on Two-Bladed Rotor; (b) Two Types of Aileron in Fully
Deflected Position (Adapted from Miller and Sirocky, 1985)
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chordwise force coefficient, CC (also called a suction coefficient). CC is a combination of both the lift
and drag coefficients, as described next:

CC ¼ CL sin α�CD cos α, ð10:65Þ
where α¼ angle of attack.

The reason for using CC to describe aileron-control braking effectiveness is that only the chordwise
force produces torque (assuming a wind turbine blade with no pitch or twist). Because of this direct
relationship between chordwise force and rotor torque, CC serves as a convenient parameter for eval-
uating an aileron’s braking effectiveness. Thus, if CC is negative it corresponds to a negative torque
producing a rotor deceleration. Clearly, it is desirable to have a negative value of CC available for
all angles of attack. Figure 10.28 shows some experimental results, Snyder, Wentz, and Ahmed
(1984), illustrating the variation of the chordwise force coefficient with the angle of attack, a, for
aileron percent chord of 20 and 30% for several aileron deflection angles. The general conclusions
to be drawn from these results is that increasing the aileron chord length and the aileron deflection
angle contribute to better aerodynamic braking performance.

10.14 BLADE TIP SHAPES
The blade geometry determined with various aerodynamic models gives no guidance of an efficient
aerodynamic tip shape. From a basic view of fluid mechanics, a strong shed vortex occurs at the
blade tip as a result of the termination of lift and this together with the highly three-dimensional nature
of the flow at the blade tip causes a loss of lift. The effect is exacerbated with a blunt blade end as this
increases the intensity of the vortex.

Many attempts have been made to improve the aerodynamic efficiency by the addition of various
shapes of “winglet” at the blade ends. Details of field tests on a number of tip shapes intended to
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Effect of Chord Length on Chordwise Force Coefficient, CC, for a Range of Angles of Attack. (Adapted from Snyder
et al., 1984, Unpublished)
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improve performance by controlling the shedding of the tip vortex are given by Gyatt and Lissaman
(1985). According to Tangler (2000), test experience has shown that rounding the leading-edge corner,
Figure 10.29, with a contoured, streamwise edge (a swept tip) yields good performance. Tip shapes of
other geometries are widely used. The sword tip also shown is often chosen because of its low noise
generation, but this is at the expense of a reduction in performance.

10.15 PERFORMANCE TESTING
Comparison and improvement of aerodynamic predictive methods for wind turbine performance and
field measurements have many inherent limitations. The natural wind is capricious; it is unsteady, non-
uniform, and variable in direction, making the task of interpreting performance measurements of ques-
tionable value. As well as the non-steadiness of the wind, non-uniformity is present at all elevations as
a result of wind shear, the vertical velocity profile caused by ground friction. The problem of obtaining
accurate, measured, steady state flow conditions for correlating with predictive methods was solved by
testing a full-size HAWT in the world’s largest wind tunnel, the NASA Ames low speed wind tunnel6

with a test section of 24.4 m � 36.6 m (80 � 120 ft).

10.16 PERFORMANCE PREDICTION CODES
Blade Element Theory
The BEM theory presented, because of its relative simplicity, has been the mainstay of the wind turbine
industry for predicting wind turbine performance. Tangler (2002) has listed some of the many versions

Sword tip

Swept tip

FIGURE 10.29

Blade Tip Geometries (Tangler, 2000; Courtesy NREL)

6Further details of this facility can be found at windtunnels.arc.nasa.gov/80ft1.html.
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of performance prediction codes based upon the BEM theory and reference to these is shown in the
following table:

According to Tangler (2002), some limitations are apparent in the BEM theory that affect its accuracy
and are related to simplifications that are not easily corrected. Basically, these errors begin with the assump-
tion of uniform inflow over each annulus of the rotor disc and no interaction between annuli. Also, the tip
loss model accounts for blade number effects but not effects due to differences in blade planform.

Lifting Surface, Prescribed Wake Theory
Modelling the rotor blades with a lifting surface and its resulting vortex wake is claimed to eliminate
the errors resulting from the simplifications mentioned for the BEM theory. The lifting surface, pre-
scribed wake theory (LSWT) is an advanced code capable of modelling complex blade geometries
and, according to Kocurek (1987), allows for wind shear velocity profiles, tower shadow, and off-
axis operation. Performance predictions are calculated by combining the lifting surface method with
blade element analysis that incorporates two-dimensional aerofoil lift and drag coefficients as functions
of the angle of attack and the Reynolds number.

It is not possible to pursue the ramifications of this developing theory any further in this introduc-
tory text. Gerber et al. (2004) give a useful, detailed description of LSWT methodology and sugges-
tions for its likely future development. Other leading references that give details of LSWT theory are
Kocurek (1987) and Fisichella (2001).

Comparison with Experimental Data
A HAWT with a 10 m diameter rotor was comprehensively tested by NREL in the NASA Ames wind
tunnel. Some of these test results are reported by Tangler (2002) and only a brief extract comparing the
predicted and measured power is given here. The test configuration comprised a constant speed (72
rpm), two-bladed rotor, which was upwind and stall regulated. Rotor blades (see Giguere and Selig,
1998) for this test had a linear chord taper with a non-linear twist distribution, as shown in Figure
10.30. It operated with �3° tip pitch relative to the aerofoil chord line. The S809 aerofoil was used
from blade root to tip for simplicity and because of the availability of two-dimensional wind tunnel
data for the blade section.

Comparison of the measured power output with the BEM (WTPERF and PROP93) and the LSWT
predictions are shown in Figure 10.31, plotted against wind speed. At low wind speeds, up to about 8
m/s, both the BEM and LSWT predictions are in very good agreement with the measured results. At
higher wind speeds both theoretical methods slightly underpredict the power actually measured, the
LSWT method rather more than the BEM method. It may be a matter of interpretation but it appears

Table 10.11

Code Name Reference

PROP Wilson and Walker (1976)

PROP93 McCarty (1993)

PROPID Selig and Tangler (1995)

WTPERF Buhl (2000)
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to this writer that only after blade stall (when the measured power sharply decreases) does the LSWT
method approach closer to the measured power than the BEM method. Thus, the overall result obtained
from wind tunnel measurements appears, in general, to strongly confirm the validity of the BEM theory
prior to the onset of stall.

Peak and Post-Peak Power Predictions
The comprehensive testing of a highly instrumented 10 m rotor in the NASA Ames 24.4 � 36.6 m
wind tunnel has provided steady state data that gives better understanding of the complex phenomena
of blade stall. Until recently, according to Gerber et al. (2004), peak and post-peak power were mis-
takenly thought to coincide with blade stall that originated in the root region and propagated towards
the tip with increased wind speed. This rather simplistic scenario does not occur due to three-
dimensional delayed stall effects. Analysis of some of the more recent data, Tangler (2003), showed
leading edge separation to occur in the mid-span region, which spread radially inwards and outwards
with increased wind speed. The BEM approach lacks the ability to model the three-dimensional stall
process. Further efforts are being made to take these real effects into account.

10.17 ENVIRONMENTAL CONSIDERATIONS
On what may be classed as environmental objections are the following topics, arguably in decreasing
order of importance: (i) visual intrusion, (ii) acoustic emissions, (iii) impact on local ecology, (iv) land
usage, and (v) effects on radio, radar, and television reception. Much has been written about all these
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Rotor Blade Tested in the NASA Ames Wind Tunnel Showing the Chord and Twist Distributions (Tangler, 2002;
Courtesy NREL)
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topics, also numerous websites cover each of them so, for brevity, only a brief recapitulation of some of
the main issues regarding the first two are afforded any space in this chapter.

Visual Intrusion
The matter of public acceptance (in the United Kingdom and several other countries) is important and
clearly depends upon where the turbines are located and their size. The early investigations of accept-
ability indicated that the sight of just a few turbines, perhaps a mile or so distant, produced only a few
isolated complaints and even appeared to generate some favourable interest from the public. However,
any suggestion of locating wind turbines on some nearby scenic hillside produced rather strong oppo-
sition, comments in the press, and the formation of groups to oppose the proposals. The opposition set
up by a few vociferous landowners and members of the public in the 1990s retarded the installation of
wind farms for several years in many parts of the United Kingdom. However, wind turbines in larger
numbers located in relatively remote upland areas and not occupying particularly scenic ground have
been installed. Nowadays, medium- and large-size wind turbines in small numbers (i.e., 20 to 30) are
regarded as beneficial to the community, providing they are not too close. Perhaps they may eventually
become tourist attractions in the area. The graceful, almost hypnotic turning of the slender blades of the
larger turbines, seemingly in slow motion, has generally led to a more positive aesthetic reaction, in
most surveys. Other factors can importantly sway public acceptance of wind turbines. The first factor
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is the perceived benefit to the community with part or total ownership, giving lower power costs and
possibly even preferential availability of power. The second factor comes from the amount of careful
planning and cooperation between the installers and the leaders of the community long before any
work on installation commences. It is a strange fact that the old-fashioned, disused windmills, now
local landmarks, that abound in many parts of Europe (e.g., see Figure 10.2), are now widely accepted.

Acoustic Emissions
Wind turbines undoubtedly generate some noise but, with the improvements in design in recent years,
the level of noise emitted by them has dropped remarkably.

Aerodynamic broadband noise is typically the largest contributor to wind turbine noise. The main
efforts to reduce this noise have included the use of lower blade tip speeds, lower blade angles of
attack, upwind turbine configuration, variable speed operation, and specially modified blade trailing
edges and tip shapes. For the new, very large (i.e., 1–5 MW size) wind turbines the rotor tip speed
on land is limited (in the United States the limit is 70 m/s). However, large variable speed wind tur-
bines often rotate at lower tip speeds in low speed winds. As wind speed increases, the rotor speed is
allowed to increase until the limit is reached. This mode of operation results in much quieter working at
low wind speeds than a comparable constant speed wind turbine.

The study of noise emitted by wind turbines is a large and complex subject. No coverage of the
basic theory is given in this chapter. Numerous publications on acoustics are available and one parti-
cularly recommended as it covers the study of fundamentals to some extent is the white paper by
Rogers and Manwell (2004), prepared by NREL. A wide ranging, deeper approach to turbine noise
is given in the NASA/DOE publication “Wind Turbine Acoustics,” by Hubbard and Shepherd (1990).

A particular problem occurs in connection with small wind turbines. These turbines are sold in large
numbers in areas remote from electric utilities and are often installed close to people’s homes, often too
close. There is an urgent need for reliable data on the levels of noise generated so that homeowners and
communities can then reliably anticipate the noise levels from wind turbines prior to installation. The
NREL have performed acoustic tests (Migliore, van Dam, and Huskey 2004) on eight small wind tur-
bines with power ratings from 400 W to 100 kW to develop a database of acoustic power output of new
and existing turbines and to set targets for low noise rotors. Test results will be documented as NREL
reports, technical papers, seminars, colloquia, and on the Internet. In comparing the results, Migliore
et al. reported that, following improvements to the blading, the noise from the Bergey Excel [see Figure
10.4(b)] was reduced to the point that the turbine noise could not be separated from the background
noise. As a result any further testing will need to be done in a much quieter location.

The Largest Wind Turbine
Claims are sometimes made that a new wind turbine is the biggest yet and produces more power than
any other. Such claims need to be carefully considered and compared with verified performance data.
The latest claimant for the title of “largest wind turbine” is reported as the Enercon E-126, a 3-bladed
rotor of 126 m diameter and officially rated at 6 MW. The hub height was not stated. This could be an
important factor. From scale measurements of a photograph the height appears to be 138.6 m.

The previous record holder was the 5 MW REpower Systems wind turbine installed at Brunsbüttel
in Schleswig-Holstein, Germany (October 1, 2004), according to a report in Renewable Energy World
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(November–December 2004). The three-bladed rotor again has a tip diameter of 126.3 m (blade length
61.5 m, maximum chord 4.6 m) and a hub height of 120 m.

The various speeds and rotor speed range quoted (data that may be useful in problem solving) are

Rotor speed 6.9-12.1 rev/min

Rated wind speed 13 m/s

Cut-in wind speed 3.5 m/s

Cut-out wind speed 25 m/s (onshore); 30 m/s (offshore)

The chief factors that influence the higher output of the Enerco E-126 turbine seems to be the
increased hub height and the possibly windier location of the site.
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PROBLEMS

1. The original 5 MW, three-bladed HAWT, made by RE Systems has a tip diameter of 126.3 m
and a rated wind speed of 13 m/s. The cut-in wind speed was 3.5 m/s and the onshore cut-out
wind speed is 25 m/s. Determine the rated value of the power coefficient Cp and compare this
with the value at the Betz limit. Assume the air density ρ¼ 1.2 kg/m3.

2. For the preceding problem, using actuator disc theory, determine the axial flow induction factor,
a, and the static pressure difference across the disc at the rated wind speed.

3. A horizontal axis wind turbine with a hub height of 80 m and blades of 80 m diameter develops
1.824 MW in a wind of 12 m/s with a blade tip–speed ratio of 4.5. Determine

(a) the power coefficient, the relative maximum power coefficient, and the rotational speed;
(b) for the same wind speed at 80 m height the wind speed that could be expected at a height of

150 m and, if the hub height was raised to that level, the likely power output if the power
coefficient remains the same.

Assume the density is constant at 1.2 kg/m3 and that the one-seventh power law applies.

4. A three-bladed HAWT with a rotor of 60 m diameter operates with a tip-speed ratio, J¼ 5.5. At a
radius of 25 m the blade chord is 1.5 m and the blade pitch angle, β¼ 2.5°. Assuming negligible
drag and using an iterative method of calculation, determine values for the axial and tangential
induction factors a and a0 at that section. Assuming that CL is 0.1 � angle of incidence, what is
the final value of the lift coefficient?
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Appendix A: Preliminary Design
of an Axial Flow Turbine for a Large
Turbocharger

Turbochargers are used to increase the power output of internal combustion engines by compressing
the air prior to it being admitted into the engine. This is achieved by employing a centrifugal compres-
sor driven by a turbine that is powered by the engine exhaust gases. Figure A.1 shows the mechanical
arrangement with the compressor and turbine on a common shaft. An air or water cooler is often used
to reduce the temperature of the air entering the engine, enabling greater power to be achieved by the
engine.

There are two basic types of turbocharger:

(i) small units for turbocharging the complete range of automobiles and trucks that incorporate an
inward flow radial turbine;

(ii) large units whose duties include ship propulsion and electrical power generation, typically 1 MW
and above, employ an axial-flow turbine. The present design study is directed to this larger size of
unit. The essential design philosophy of these larger turbochargers is that they have high efficien-
cies over a limited flow range unlike the automotive turbochargers, which usually have a rather
lower efficiency over a wide flow range. All turbochargers need to be compact, durable, and
have low unit cost. Typically, for these large units, low unit cost is maintained by using single-
stage turbines even for pressure ratios greater than 4.5 to 1.

Detailed discussions of the various types and design features of turbochargers are given by Flaxington
and Swain (1999) and by Iwaki and Mitsubori (2004).

DESIGN REQUIREMENTS
The total pressure available at turbine inlet, 2.1 kPa
The static pressure at turbine exit, p3, 1.05 kPa
Entry temperature of products of combustion to turbine, T01, 500°C
Mass flow rate, _m 8 kg/s
Free vortex design
Reaction ratio, R, 0.4
Flow coefficient, �, 0.4
Axial flow at entry and exit of turbine
Target efficiency, ηtt, 0.90
Assume a constant value of specific heat at constant pressure,
Cp(kJ/kg°C), 1.178
Assume a ratio of specific heats, γ, 1.32

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00012-2
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MEAN RADIUS DESIGN
The steps in a preliminary design of an axial flow turbine are essentially a process of trial and error and
several different approaches are possible depending on the data available, any additional assumptions
that may have to be made, and the designer’s previous experience. The notation used relates to that of
Figure 4.4.

First we need to determine the isentropic enthalpy drop across the stage, Δhis¼ h01�h3ss.
The isentropic temperature ratio is

T3ss
T01

¼ p3
p01

� �ðγ�1Þ=γ
¼ 0:50:2424 ¼ 0:8453:

Therefore,

Δhis ¼ CpT01ð1� T3ss=T01Þ ¼ 1:178� 773�ð1� 0:8453Þ ¼ 140:8 kJ=kg

and

T3ss ¼ 653:4 K:

FIGURE A.1

The Mechanical Arrangement of the Centrifugal Compressor and Axial-flow Turbine of a Large Turbocharger
(With Permission of ABB Asea Brown Beverl)

416 Appendix A: Preliminary Design of an Axial Flow Turbine for a Large Turbocharger



From Figure 4.4, ΔW¼ h01�h03 and the total-to-total efficiency can be written as

ηtt ¼
ΔW

h01 � h03ss
≈

ΔW

h01 � h3ss � 1
2 c

2
3

,

using the small approximation, 1
2c

2
3 ≈

1
2c

2
3ss. Hence,

Δhis ¼ ΔW
ηtt

þ 1
2
c23 ¼

ΔW
ηtt

þ 1
2
c2x .

From eqn. (4.13a) and with α1¼ 0 (axial entry flow),

R ¼ 1� cx tan α2
2U

; ðA:1Þ

therefore,

ΔW ¼ Ucx tan α2 ¼ 2 1�Rð ÞU2 ¼ ηtt Δhis � 1
2
c2x

� �
ðA:2Þ

after some rearranging.
Using �¼ cx/U in the preceding and with a little more rearranging we get:

U2 ¼ ηttΔhis
2ð1�RÞ þ 1

2 ηtt�
2 . ðA:3Þ

Using the values of the parameters given in the design requirements, we get

U ¼ 315:6 m=s and cx ¼ 126:3 m=s:

From eqn. (A.2), ΔW¼ 2(1�R)U2¼ 119.6 kJ/kg,

tan α2 ¼ ΔW
Ucx

¼ 119:55� 103

315:6� 126:3
¼ 3:0,

α2 ¼ 71:56°.

DETERMINING THE MEAN RADIUS VELOCITY TRIANGLES
AND EFFICIENCY
We can easily determine the rest of the data necessary to calculate the total-to-total efficiency.
For α3¼ 0°,

tan β3 ¼ U=cx ¼ 1=� ¼ 2:5, so β3 ¼ 68:2°.

From eqn. (4.13b) with α3¼ 0°,

tan β2 ¼ tan β3 � 2R=� ¼ 0:5, so β2 ¼ 26:57°,

w3 ¼ cx=cos β3 ¼ 340:1 m=s,

c2 ¼ cx=cos α2 ¼ 399:3 m=s.

Determining the Mean Radius Velocity Triangles and Efficiency 417



From eqn. (4.20b), we use the approximation for the total-to-total efficiency recommended for
initial calculations, i.e.,

ηtt ¼ 1þ ζ Rw
2
3 þ ζNc

2
2

2ΔW

� ��1

.

The Soderberg loss coefficients, in their simplest form, are used,

ζ ¼ 0:04½1þ 1:5ðε=100Þ2�.
For the rotor, εR¼ β2þ β3¼ 94.77°, hence, ζ¼ 0.0939.
For the nozzle row, εN¼ α2¼ 71.56°, hence, ζ¼ 0.0707.
Evaluating the total-to-total efficiency using these data, ηtt¼ 91.5%.
This is fairly close to the value originally used in the calculations and a further iteration at this stage of
the design with this new value is not really necessary.

The total-to-static efficiency can be evaluated from eqn. (4.21b), i.e.,

ηts ¼ 1þ ζ Rw
2
3 þ ζNc

2
2 þ c2x

2ΔW

� ��1

.

Hence, we get, ηts¼ 86.26%.
It is worth noting that values of total-to-static efficiency are shown in Figure 4.17 for a stage with

axial flow at exit with the coordinate axes, stage loading coefficient, ψ¼ΔW/U2, and flow coefficient,
�¼ cx/U. In the present design the value of ψ¼ 1.2 and R¼ 0.4 at the mean radius and, not unexpect-
edly, we obtain complete accord for the value of ηts from the graph.

The nozzle exit Mach number M2 ¼ c2=
ffiffiffiffiffiffiffiffiffiffi
γRT2

p
is now determined:

T2 ¼ T01 � c22=ð2CpÞ ¼ 705:3 K,

γR ¼ ðγ�1ÞCp,

M2 ¼ 0:774:

Note: Turbine stages can be designed to operate at much higher loads, i.e., with larger available
pressure ratios, resulting in supersonic absolute flow at nozzle exit and possibly supersonic
relative flow into the rotor. For such flows shock wave systems will occur and some loss in
efficiency is then inevitable. Supersonic and transonic flows in axial turbine cascades are discussed
in Chapters 3.

DETERMINING THE ROOT AND TIP RADII
The axial flow area at nozzle exit is A2 ¼ _m=ðρ2cxÞ where ρ2¼ p2=ðRT2Þ. We need to determine the
static pressure p2 taking into account the nozzle losses. It is easily shown that

p2
p01

¼ T2s
T01

� �γ=ðγ�1Þ
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and, for a nozzle,

1� T2s
T01

� �
¼ 1� T2

T01

� ��
ηN .

At this point in the design we have no information on the magnitude of nozzle efficiency. However, in
a nozzle the losses will be low and a value ηN¼ 0.97 is selected. Using this value and earlier data,
determine T2s/T01¼ 0.9097. Hence,

p2 ¼ 0:6768p01 ¼ 1:4213� 105 Pa as p01¼ 2:1� 105 Pa:

Thus, ρ2¼ p2/(RT2)¼ 0.7056 kg/m3 with R¼ 285.6 kJ/kg°C. Therefore, the flow area

A2 ¼ m_

ρ2cx
¼ 8

0:7056� 126:3
¼ 0:08977 m2.

In Table A.1 several values of hub–tip ratio have been selected to discover the most suitable blade
aspect ratio, rotational speed, and blade root stress for the turbine rotor. Equation (4.34a) gives the cen-
trifugal stress developed at the root of the rotor blades. It is assumed that the blades are untapered and
made of steel (ρm¼ 7850 kg/m3).

The blade tip radius is determined from eqn. (4.25),

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2=π

	
1�ðrh=rtÞ2


q
and the average blade temperature Tb¼ 721 K is determined from eqn. (4.35).

Comparing the stress divided by density values with the rather limited data given in Figure 4.20, the
stress levels are quite low and there appears to be no limitation in using untapered steel blades.

VARIATION OF REACTION AT THE HUB
In Chapter 6 an application of free-vortex flow was made to an axial flow compressor where it was
shown that the reaction increases radially as we go from root to tip, see eqn. (6.9). The same result
applies to the axial-flow turbine stage and here our interest must be directed to how small the reaction
becomes at the hub. This is important as losses can become large when the reaction is very low or even
negative.

Table A.1

rh/rt 0.75 0.8 0.85 0.9 Notes

rt/(cm) 25.56 28.17 32.09 38.78

H/(cm) 6.39 5.634 4.814 3.878 Blade height

Ut/(m/s) 360.7 350.7 341.2 332.2 Tip speed
�c=�m

104m2=s2
2.846 2.214 1.615 1.048

σc/(MPa) 223.4 173.8 126.8 104.8 Centrifugal stress

N/(rev/min) 13,476 11,887 10,153 8,180 Rotor speed

Rh 0.18 0.24 0.29 0.33 Reaction at the hub

Z 44 56.5 77.5 119 No. blades with H/s¼ 2

Variation of Reaction at the Hub 419



From eqn. (A.1), for all radii,

R ¼ 1� cx tan α2
2U

¼ 1� cθ2
2U

¼ 1� K

2Ur
.

When referring to particular flow conditions at the mean radius the subscript m will be added to the
variables R and r. Thus,

Rm ¼ 1� K

2Umrm
.

Combining these expressions the radial variation of reaction is

R ¼ 1� 1�Rmð Þ rm
r

� �2
.

Values of R at the hub radius rh are given in Table A.2 as a function of rh/rt. The value of rh/rt at which
R¼ 0 is 0.632.

CHOOSING A SUITABLE STAGE GEOMETRY
Deciding on a suitable configuration for the turbine is not so easy as several factors need to be con-
sidered in making a decision. The size of the unit can be of importance and usually the turbocharger
needs to be made as small as possible. As shown in Table A.1, by making rt smaller the speed of rota-
tion must increase. As a result both the blade length and the root stress are increased. It is also neces-
sary to check that the blade pitch s is not so small that the blades cannot be safely attached to the rim of
the turbine disc. In small turbines such as this design it may be practicable to consider either machining
the blades and disc from a single forging or welding the blades onto the disc.

The blade aspect ratio H/s is another factor that can affect the efficient working of the turbine. This
ratio needs to be sufficiently large that the end wall losses and secondary flow losses do not become
excessive. A just acceptable value of H/s is 2.0 and, in Table A.1, the values of Z¼ 2πrm/s resulting
from this choice are shown.

Although the decision is not absolutely clear cut, on balance the present designer favours the
smallest size of the selection, rh/rt¼ 0.75 with 44 blades. With the sizing choice having now been
made the flow angles at the root and tip radii are determined and the velocity diagrams are added
to Figure A.2.

Table A.2 Data for the Calculated Velocity Triangles

r/rt α2 (deg) β2 (deg) β3 (deg) U (m/s) Rh

1.0 69.14 �13.0 70.7 360.7 0.54

0.875 71.6 26.6 68.2 315.6 0.4

0.75 74.1 53.7 65.0 270.5 0.183

Note: Axial velocity cx¼ 126.3 m/s at all radii.
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For the nozzle blades, as a precaution against the possibility of inducing resonant frequencies
between the rotor blades and the nozzle blades the number of nozzle blades is chosen to be 45, thereby
avoiding common multiples.

ESTIMATING THE PITCH/CHORD RATIO
Referring to the measured profile loss coefficients for turbine nozzle and impulse blades, the data of
Figure 3.24, indicate two significant trends:

(i) losses increase generally as the flow deflection increases;
(ii) the greater the flow deflection required, the lower must be the pitch–chord ratio to minimise the

losses.

The simplified form of Zweifel’s criterion, eqn. (3.55) can be applied to the mean radius of the rotor:

Z ¼ 2ðs=bÞcos 2β3ðtan β3 þ tan β2Þ ¼ 0:8,

with β2¼ 26.6° and β3¼ 68.2° we get

s=b ¼ 0:8=0:8275 ¼ 0:967:

The relationship between the axial chord, b, and the true chord, l, of a blade row is not simple or
at all obvious. However, a simple, approximate geometric relationship can be found based upon the
assumption of a single circular arc to represent the camber line of a turbine blade in a cascade,

2138

26.68

53.78

74.18

71.68

69.148

360.7

Tip

Mean

Root

315.6

270.5

70.78

68.28

658

FIGURE A.2

Velocity Triangles for Root, Mean, and Tip Radii
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as shown in Figure A.3. From the construction details shown in this figure the stagger angle ξ can be
obtained from

tan ξ ¼ cos β
0
2 � cos β

0
3

sin β
0
2 þ sin β

0
3

.

Making a crude approximation we can substitute the relative flow angles β2 and β3 into this expres-
sion and so deriving a “stagger” angle,

tan ξ ¼ cos 26:6� cos 68:2
sin 26:6þ sin 68:2

¼ 0:5228
1:376

¼ 0:3798

ξ ¼ 20:8°.

Hence, s/l¼ (s/b)(b/l)¼ 0.967�cos20.8¼ 0.903.
This space-chord ratio appears to be suitable and is in agreement with the values found by Ainley

and Mathieson (1951), Figure 3.24, although the exact value is not crucial.
The velocity triangles for the root, mean, and tip radii are drawn in Figure A.2. Equation (4.15) can

be used to obtain the relative flow angles shown in Table A.2 with α3¼ 0.

BLADE ANGLES AND GAS FLOW ANGLES
A point well worth remembering is that the velocity triangles relate to the gas angles and not to the
blade angles. Cascade results for impulse and reaction blades, e.g., Figure 3.25, show that the profile
loss coefficients for reaction blades are not very sensitive to the angle of incidence over a wide range
(�20° to 15°). This means that in the preliminary design exercise the rotor blades can have less twist
along their length, i.e., blade sections may operate at varying amounts of incidence without incurring
excessive losses.

R

l

S

R

b

�1
2

�1
3

�

FIGURE A.3

Construction Details to Determine Stagger Angle
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ADDITIONAL INFORMATION CONCERNING THE DESIGN
Power output, _mΔW ¼ 956:4 kW;
Rotational speed, N¼ 13,476 rev/min;
Rotor tip radius, rt¼ 25.56 cm;
Rotor blade chord l¼ 4.56 cm;
Rotor blade temperature, Tb¼ 772 K.

See also Table A.3.

POSTSCRIPT
The initial design described is one of many possible methods that could be employed and was
governed by the initial assumptions (free-vortex design, choices of degree of reaction, and flow coeffi-
cient) as well as decisions made about the radius ratio and blading. Students could further investigate
the effect of increasing the value of the flow coefficient (so reducing the turbine diameter), increasing
the reaction ratio or using a non-free-vortex flow such as the first power stage design, eqn. (6.15). In all
such design attempts it would be wise to check the values of reaction and Mach number at the blade
root for reasons given earlier.

References
Ainley, D. G., and Mathieson, G. C. R. (1951). A method of performance estimation for axial flow turbines. ARC. R. and

M., 2974.
Flaxington, D., and Swain, E. (1999). Turbocharger aerodynamic design. Proceedings of the Institution of Mechanical

Engineers, 213, Part C.
Iwaki, F., and Mitsubori, K. (2004). Development of TPL and TPS series marine turbocharger. IHI Engineering Review,

37(1).

Table A.3

Radius, cm rh = 19.17 cm rm = 22.37 cm rt = 25.56 cm

Nozzle exit Mach number 0.906 0.74 0.682

Nozzle exit velocity/(m/s) 460 399 355

References 423



This page intentionally left blank



Appendix B: Preliminary Design
of a Centrifugal Compressor for
a Turbocharger

This design is a follow-up to the preliminary turbine design given in Appendix A to which it is linked.
The power delivered to the compressor will be rather less than that produced by the turbine to allow for
bearing frictional losses. The air mass flow entering the compressor will be lower than the products of
combustion entering the turbine because of the fuel used by the engine. The rotational speed of the
compressor is the same as that of the turbine as they are on the same shaft.

For the turbine, a premium was placed on small size, so that for the compressor a vaned diffuser
will be needed to restrict the size of the turbocompressor. Pre-whirl of the inlet flow will not be
required both to simplify the design and because of the expected fairly low Mach numbers. As this
compressor is not a heavily loaded, high performance design, the use of backward swept impeller
vanes is unlikely to confer much advantage in comparison with a design having radial vanes. In fact,
certain attributes associated with backward swept vanes suggest that a higher overall efficiency can
be achieved although this design study has not been extended to include such vanes.

DESIGN REQUIREMENTS AND ASSUMPTIONS
Power supplied by the turbine (allowing for bearing friction), P, 947 kW;
Rotational speed, N, 13,476 rev/min;
Air mass flow, _m, 7.5 kg/s;
Inlet stagnation temperature, T01, 293 K;
Inlet stagnation pressure, p01, 105 kPa;
Assume a constant value of specific heat, Cp, 1.005 kJ/kg°C;
Assume a constant value of ratio of specific heats, γ, 1.4;
The number of rotor blades is, Z, 21.

DETERMINING THE BLADE SPEED AND IMPELLER RADIUS
The specific work is ΔW ¼ P/ _m ¼ 947� 103/7:5 ¼ 126.3� 103 m2/s2.1

The impeller radius is easily found since ΔW¼U2cθ2 and, using the Stanitz expression for the slip
factor, σ¼ 0.63 π/Z¼ cθ2/U2¼ 0.9057:

U2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔW=σ

p
¼ 373.4 m=s,

r2 ¼ U2=Ω ¼ 0.265 m as Ω ¼ 1411 rad=s:

1Results shown in bold will be referred to later.

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00013-4
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DESIGN OF IMPELLER INLET
Several alternative methods can be used to start the design of the inlet. We can choose a particular ratio
of rs1/r2, usually in the range 0.35 to 0.65, and select an axial velocity to blade tip speed ratio at inlet,
cx1/Us1, in the range 0.4 to 0.5, then proceed from there to calculate the hub–tip radius ratio from the
continuity equation. The magnitude of the maximum relative Mach number at the inlet, M1,rel, at the
shroud radius rs1 can then be checked and further repeat adjustments made as required to the values of
rh1/r2 and cx1/Us1.

A more direct method is available using the theory already developed leading to eqn. (7.24a). The
inlet radius ratio can be determined by a suitable choice of the relative inlet Mach number M1,rel at the
shroud. Referring to eqn. (7.23a) with γ¼ 1.4, this is

f ðM1,relÞ ¼ Ω2 _m

πkp01γa01
¼ M3

1,relsin
2βs1 cos βs1

1þ 1
5M

2
1,relcos

2βs1

 �4 , ð7:24aÞ

where k¼ 1� (rh1/rs1)
2. For α1¼ 0 and a fixed value of M1,rel, the optimum value of βs1, is at the maxi-

mum value of f (M1,rel) (see Figure 7.11). For a fixed value of M1,rel, it can be shown by differentiating
the right-hand side of eqn. (7.24a), that this maximum occurs when

cos2βs1 ¼ X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 1=M2

1,rel

q
,

where X ¼ 0:7þ 1:5/M2
1,rel.

Using the given or derived data, several optimum values of k and hub–tip ratios have been deter-
mined (to illustrate the trend) for a range of values of M1,rel, shown in Table B.1.

The value rh1/rs1¼ 0.443 is in the normal range used in practice and corresponds to M1,rel¼ 0.7,
which seems satisfactory.

The inlet dimensions are now easily found with the equation of continuity, _m ¼ ρ1A1cx1:

r2s1 ¼
_m

πkρ1cx1
,

where ρ1¼ ρ01
�
1þ 1

5M
2
1

	 
2:5
and cx1¼M1a1,

M1¼M1,relcos βs1¼ 0:7� cos 57:94 ¼ 0.3716,

a1¼ a01 1þ 1
5
M2

1

� �0:5
¼ 338:5 m=s,

,

Table B.1

M1,rel 0.7 0.75 0.8 0.85

Max of right-hand side of eqn. (7.24a) 0.1173 0.1420 0.1695 0.2000

βs1 (deg) at max of f(M1,rel) 57.94 58.36 58.78 59.25

k 0.8037 0.6640 0.5560 0.4715

rh1/rs1 0.4430 0.5796 0.666 0.7270
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and

cx1 ¼ 0:3716� 338:5 ¼ 125:8 m=s.

As ρ01 ¼ p01/(RT01) ¼ 1.249 kg/m3, ρ1 ¼ 1.249/1.0704 ¼ 1.1669 kg/m3. Thus, r2s1 ¼ 7:5/
ðπ� 0:8037� 1:1669� 125:8Þ ¼ 0:02024 and

rs1 ¼ 0.1423 m and rh1 ¼ 0.0630 m:

EFFICIENCY CONSIDERATIONS FOR THE IMPELLER
In well-designed radial-vaned impellers the stagnation pressure losses are not large and isentropic effi-
ciencies up to 92% have been attained at the optimum specific speed, NS � 0.6 to 0.7.2 The reason for
the high efficiency achieved by centrifugal compressor impellers is because of the major contribution
made to the compression process by the frictionless centrifugal term 1

2ðU2
2 �U2

1Þ, shown in eqn. (7.2).
Rodgers (1980) noted that impellers with between 25° and 50° of backsweep were found to give
around 2% higher efficiency than those with radial vanes. Notwithstanding the efficiency advantage
of backswept vanes we shall persist with radial vanes because of their greater simplicity and obviously
lower manufacturing cost. In the present radially bladed impeller it seems quite reasonable to assume
an isentropic efficiency �i¼ 92% for the impeller, and this value is used in the following calculations.

DESIGN OF IMPELLER EXIT
Designers often choose a value for the radial component of velocity cr2 at impeller exit equal to the
axial velocity cx1 at impeller entry. Hence, we shall use cr2¼ 125.8 m/s.

As U2¼ 373.4 m/s and σ¼ 0.9057 then cθ2¼ 338.2 m/s,

c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2θ2 þ c2r2

q
¼ 360.8 m=s

and the flow angle α2¼ tan�1(cθ2/cr2)¼ 69.60° (measured from the radial direction).
From the continuity equation, eqn. (1.8), _m ¼ ρ2A2cr2 ¼ 7:5 kg/s and A2¼ 2πr2b2, so to solve for

b2 we need to determine the density, ρ2¼ p2/(RT2).
Now

ηi ¼
h02s � h01
h02 � h01

¼ T02s=T01 � 1
T02=T01 � 1

and

T02
T01

¼ ΔW
CpT01

þ1 ¼ 1.4289

and T02¼ 418.7 K.

2In this design Ns¼ �0.5/ψ0.75, where �¼ cx1/U2¼ 118.7/373.4¼ 0.3179 and ψ¼ ΔW /U2
2 ¼ 126:3� 103/373:42 ¼ 0:9058.

Hence, Ns¼ 0.607 (based on inlet axial velocity).
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Hence, with �i¼ 0.92, we obtain T02s/T01¼ 1.3946 and p02/p01¼ 3.203; therefore,

p02 ¼ 336.3 kPa,

T2 ¼ T02 � c22
2Cp

¼ 353.9 K so T2/T01 ¼ 1.2080 and T02/T2 ¼ 1.1830,

p2 ¼ p02

,
T02
T2

� �γ=ðγ�1Þ
¼ 186.7 kPa.

Hence, ρ2¼ p2/RT2¼ 186.7�103/(287�353.9)¼ 1.838 kg/m3, so

b2¼ _m=ð2πρ2cr2r2Þ ¼ 0:0195 m ¼ 1.95 cm,

b2
r2

¼ 1:95
26:5

¼ 0:0736:

At impeller exit the Mach number, M2¼ c2/a2, where a2 ¼
ffiffiffiffiffiffiffiffiffiffi
γRT2

p ¼ 377:1 m/s,

M2 ¼ 360:8=377:1 ¼ 0.957.

FLOW IN THE VANELESS SPACE
The region between the impeller exit, radius r2 and the start of the diffuser vanes at radius r2d is known
as the vaneless space and within this space the flow is treated as though it was in a vaneless diffuser
(see notes on Vaneless diffusers). The flow leaving the impeller is known to have extensive regions of
separated flow and to be highly non-uniform and may have strong, deleterious effects on the diffuser
performance. Having a vaneless space allows some flow diffusion to take place but also allows some
reduction of these flow irregularities before entry into the diffuser vanes.

The minimum radius ratio for the vaneless space, r2d/r2, mentioned by Cumpsty (1989) and others
is 1.1, although this ratio could be further increased if necessary to reduce the Mach number of the flow
at entry to the vanes. In the case of the present design the Mach number, M2, is not excessive so that
this measure is not needed. We will assume that the axial width of the vaneless space remains constant
at b2¼ 1.95 cm.

Despite the known highly irregular flow entering the vaneless space it is usually assumed for the
purposes of a preliminary design that a smoothed out and frictionless flow exists. It is assumed for
simplicity that the flow is frictionless, that the tangential momentum is conserved within the vaneless
space. In Chapter 7 the flow in a parallel walled diffuser was assumed to be incompressible and this led
to the idea of a logarithmic spiral flow path as described by eqn. (7.53).

We may determine the tangential velocity at the radius r2d¼ 1.1r2 from

cθ2d
cθ2

¼ r2
r2d

so cθ2d ¼ 338:2=1:1 ¼ 307.5 m=s,

cr2d ¼ r2
r2d

cr2 ¼ 114:36 m=s, α2d ¼ cos�1ð114:36=307:5Þ ¼ 68.16°,
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c2d ¼ ðc22dþc2r2dÞ0:5 ¼ 328:1 m=s, T2d ¼ T02 � c22d=ð2CpÞ ¼ 418:7� 328:12=2010 ¼ 365:2 K,

a2d ¼ ðγRT2dÞ0:5 ¼ 383:0, so M2d ¼ 328:1=383 ¼ 0.856:

An Iterative Procedure
The flow at entry to our vaneless diffuser space is in a high subsonic Mach number range and one
might expect a significant change in Mach number to occur across the diffuser. So, in the following
analysis a progressive series of approximations is used to try and discover just how much the density
(and Mach number) changes.

In the first approximation, the radial velocity at radius r2d is obtained using the incompressible log-
spiral approximation:

cr2d ¼ cr2ðr2=r2dÞ ¼ 125:8=1:1 ¼ 114:3.

Hence,

c2d ¼ ðc2θ2d þ c2r2dÞ0:5 ¼ ð307:52þ 114:32Þ0:5 ¼ 328:06 m=s.

In the second approximation, we can determine T2d and p2d at radius r2d:

T2d ¼ T02 � c22d=2Cp ¼ 418:7� 328:062=2010 ¼ 365:2 K,

p2d ¼ p02=ðT02=T2dÞγ=ðγ�1Þ ¼ 336:3� 103=ð418:7=365:2Þ3:5 ¼ 208:4 kPa,

ρ2d ¼
p2d
RT2d

¼ 208:4� 103

287� 365:2
¼ 1:988 kg=m3,

A2d ¼ 2πr2db2 ¼ 2π� 0:2915� 0:0195 ¼ 0:03572 m2,

so that

cr2 ¼ _m=ðρ2dA2dÞ ¼ 7:5=ð1:988� 0:03572Þ ¼ 105:6 m=s,

c2d ¼ ð105:62þ 307:52Þ0:5 ¼ 325:1 m=s.

For the third approximation,

T2d ¼ T02d � c22d=ð2CpÞ ¼ 418:7� 325:12=2010 ¼ 366:1 K,

P2d ¼ P02d=ðT02d=T2Þγ=ðγ�1Þ ¼ 336:3=ð418:7=366:1Þ3:5 ¼ 210:2 kPa,

ρ2d ¼ 210:2=ð287� 366:1Þ ¼ 2:000 kg=m3,

cr2d ¼ _m=ð ρ2dA2dÞ ¼ 7:5=ð2:00� 0:03572Þ ¼ 104:98 m=s,

therefore,

c2d ¼ ð104:982 þ 307:52Þ0:5 ¼ 324:9 m=s.

Flow in the Vaneless Space 429



This iteration has provided sufficient convergence so that the Mach number M2d and flow angle α2d
can be determined:

M2d ¼ c2d=
ffiffiffiffiffiffiffiffiffiffiffiffi
γRT2d

p
¼ 324:9=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4� 287� 366:1

p
¼ 0.847,

α2d ¼ tan�1ðcθ2d=cr2dÞ ¼ tan�1ð307:5=104:98Þ ¼ 71.15°:

This calculation shows that, for this spiraling flow with a high subsonic Mach number, the change
in radius between the impeller exit and the entrance to the vaned diffuser actually causes only a small
change in Mach number and flow angle.

A more elegant method of solution for the flow in the vaneless space is to use the compressible
flow equation:

_m

Anp0

ffiffiffiffiffiffiffiffiffiffi
CpT0

p ¼ γMffiffiffiffiffiffiffiffiffiffi
γ� 1

p 1þ γ� 1
2

M2

� �1
2½ðγþ1Þ=ðγ�1Þ�

. ð1:38Þ

In the vaneless space the values of _m, Cp, T0, and p0 are constant by assumption and γ¼ 1.4. Thus,
the equation reduces to

AnM

1þ 1
5M

2

 �3 ¼ constant:

It will be appreciated that An is the area 2πrb and the change in area we are considering is controlled
by the radial direction r. It is thus necessary to apply this expression to the change in radius from r2 to
r2d using the radial component of M.

At entry to the vaneless space, M2¼ 0.957 and α2¼ 69.6°, so that M2r¼ 0.957 cos 69.6°¼ 0.3336.
Hence, we need to solve for M2r in the expression

r2M2r

1þ 1
5M

2
2r


 �3 ¼ r2dM2dr

1þ 1
5M

2
2dr


 �3 .
Substituting r2d /r2¼ 1.1 and M2r¼ 0.3336 we can solve iteratively (or using tables) to obtain

M2r¼ 0.2995. With α2¼ 69.6°, we find M2d¼ 0.858.
Determining the Mach number change across the vaneless space may be regarded (in this instance)

as just an exercise in the use of the compressible flow equation. The result obtained varies only slightly
from that determined using incompressible flow analysis.

THE VANED DIFFUSER
From Figure 7.9 (with L/W1¼ 8) a good choice of a plate diffuser would be one with 2θ¼ 8°, corre-
sponding, at this point, to the values Cp¼ 0.7 and Cp,id¼ 0.8. This is close to the maximum efficiency
condition for this type of diffuser and, according to the data shown in Figure 7.8, is in the flow regime
that avoids stall.
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From eqn. (7.10) the static pressure at diffuser exit will be

p3 ¼ p2d þCpq2d ¼ 210:2þ 0:7� 105:6 ¼ 284:1 kPa,

and by using eqn. (7.13) the exit velocity will be

c3 ¼ c2dð1�Cp,idÞ0:5 ¼ 324:9ð1� 0:8Þ0:5 ¼ 145.3 m=s.

The actual number of diffuser “nozzles” is fairly arbitrary but is usually chosen to be much less than
the number of impeller vanes. In this design the number chosen is Z¼ 12 corresponding with common
practice in manufacturing.

THE VOLUTE
The purpose of the volute (or scroll), shown in Figure 7.4, is simply to collect the compressed air leav-
ing the diffuser and guide it to the engine air intake. The energy losses in the volute are partly the result
of the dissipation of the kinetic energy at diffuser exit due to turbulent mixing and partly due to friction
on the solid surfaces of the volute. According to Watson and Janota (1982) the total loss in the volute is
usually assumed to be (about) half of the dynamic pressure leaving the diffuser. Here, we shall assume
this extra loss is exactly half of the available dynamic pressure.

DETERMINING THE EXIT STAGNATION PRESSURE, p03, AND OVERALL
EFFICIENCY, hC
We determine the density, ρ3¼ p3/RT3, where T3 ¼ T03 � c23=ð2CpÞ ¼ 411:9 K and p3¼ 284.1 kPa.
Hence, ρ3¼ 2.409 kg/m3.

Immediately on leaving the diffuser the total pressure is approximately p03¼ p3 þ q3 where
q3¼ 1

2 ρ3c
2
3, and q3¼16.4 kPa, hence, p03¼ 300.9 kPa. Because of the total pressure losses in the volute

mentioned previously the final total pressure at compressor exit is estimated as p03¼ p3 þ 1
2q3¼ 293 kPa.

The overall compressor efficiency �C can be found with eqn. (7.21):

ηc ¼ CpT01ðT03ss=T01�1Þ=ΔW ,

where T03ss/T01¼ (p03′/p01)
1
3:5 ¼ 1.3407. Thus,

ηc ¼ 0:794:

This value of overall efficiency is rather low and can be attributed to the poor diffuser efficiency
(�D¼ 0.805). The performance of the conical diffuser is known to be fairly resistant to stall, particu-
larly with the flow issuing from the impeller, which is turbulent and unsteady. So, another attempt is
made to redesign the diffuser with Cp ¼ C	

p ¼ 0:8.
Again, from Figure 7.26 the new values of A2/A1¼ 4.42 and N/R1¼ 18.8:

C	
p,id ¼ 1� 1=A2

R ¼ 0:9490 and ηD ¼ C	
p=C

	
p,id ¼ 0.843.
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Following the previous calculations the results obtained for the new diffuser are

p3 ¼ 295:3 kPa;

c3 ¼ 73:0 m=s;

T3 ¼ 416:0 K;

ρ3 ¼ 2:473 kg=m3;

and

p03 ¼ 301:9 kPa.

With the volute loss included, p03′¼ 298.6 kPa.
Thus, T03ss′/T01¼ ð298:6=105Þ 1

3:5�1.3480 and the compressor efficiency is

ηc ¼ 81:1%.

This is a substantial improvement on the previous value. The student will have realized that the
subject of design provides a seemingly infinite number of choices and the best one can do is to use
any well-founded guidance that is available. On this topic it was remarked by Cumpsty (1989) that
the procedures used by most organizations involved in the design of compressors are shrouded in com-
mercial secrecy. New designs are somehow evolved often based upon older successful designs and as
long as the new product gives satisfactory test results then some sort progress can be claimed.
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Appendix C: Tables for the Compressible
Flow of a Perfect Gas

The tables in this appendix are required for some of the problems in the book. All results are quoted to
four decimal places at equal intervals of Mach number so that linear interpolation can be easily applied
where required. In most cases this will give adequate accuracy, but if necessary improved precision can
be obtained by direct application of the formulae that follow:

Static and Stagnation Quantities Flow Relations

T

T0
¼ 1þ γ� 1

2
M2

� ��1

p

p0
¼ 1þ γ� 1

2
M2

� ��γ=ðγ�1Þ

ρ
ρ0

¼ 1þ γ� 1
2

M2

� ��1=ðγ�1Þ

c ¼ M
ffiffiffiffiffiffiffiffi
γRT

p
,

cffiffiffiffiffiffiffiffiffiffi
CpT0

p ¼ M
ffiffiffiffiffiffiffiffiffiffi
γ� 1

p
1þ γ� 1

2
M2

� ��1
2

_m ¼ ρcAn,
_m
ffiffiffiffiffiffiffiffiffiffiffi
CPT0

p
Anp0

¼ γffiffiffiffiffiffiffiffiffiffi
γ� 1

p M 1þ γ�1
2

M2

� ��1
2 γþ1ð Þ= γ�1ð Þ½ �

Note that in steady, adiabatic flow with no shaft work, T0 is constant. If the flow is also isentropic,
p0 and ρ0 are also constant.

Through a steady flow turbomachinery device, the mass flow rate will be conserved such that _m is
constant.

Table C.1 shows results for γ = 1.4 (applicable to dry air and diatomic gases). Table C.2 shows
results for γ = 1.333 (typical of gas turbine combustion products).
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Table C.1 Compressible Flow for a Perfect Gas, γ = 1.4

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.00 1.0000 1.0000 1.0000 0.0000 0.0000

0.01 1.0000 0.9999 1.0000 0.0221 0.0063

0.02 0.9999 0.9997 0.9998 0.0443 0.0126

0.03 0.9998 0.9994 0.9996 0.0664 0.0190

0.04 0.9997 0.9989 0.9992 0.0885 0.0253

0.05 0.9995 0.9983 0.9988 0.1105 0.0316

0.06 0.9993 0.9975 0.9982 0.1325 0.0379

0.07 0.9990 0.9966 0.9976 0.1545 0.0443

0.08 0.9987 0.9955 0.9968 0.1764 0.0506

0.09 0.9984 0.9944 0.9960 0.1983 0.0569

0.10 0.9980 0.9930 0.9950 0.2200 0.0632

0.11 0.9976 0.9916 0.9940 0.2417 0.0695

0.12 0.9971 0.9900 0.9928 0.2633 0.0758

0.13 0.9966 0.9883 0.9916 0.2849 0.0821

0.14 0.9961 0.9864 0.9903 0.3063 0.0884

0.15 0.9955 0.9844 0.9888 0.3276 0.0947

0.16 0.9949 0.9823 0.9873 0.3488 0.1009

0.17 0.9943 0.9800 0.9857 0.3699 0.1072

0.18 0.9936 0.9776 0.9840 0.3908 0.1135

0.19 0.9928 0.9751 0.9822 0.4116 0.1197

0.20 0.9921 0.9725 0.9803 0.4323 0.1260

0.21 0.9913 0.9697 0.9783 0.4528 0.1322

0.22 0.9904 0.9668 0.9762 0.4731 0.1385

0.23 0.9895 0.9638 0.9740 0.4933 0.1447

0.24 0.9886 0.9607 0.9718 0.5133 0.1509

0.25 0.9877 0.9575 0.9694 0.5332 0.1571

0.26 0.9867 0.9541 0.9670 0.5528 0.1633

0.27 0.9856 0.9506 0.9645 0.5723 0.1695

0.28 0.9846 0.9470 0.9619 0.5915 0.1757

0.29 0.9835 0.9433 0.9592 0.6106 0.1819

0.30 0.9823 0.9395 0.9564 0.6295 0.1881

0.31 0.9811 0.9355 0.9535 0.6481 0.1942

0.32 0.9799 0.9315 0.9506 0.6666 0.2003

0.33 0.9787 0.9274 0.9476 0.6848 0.2065

0.34 0.9774 0.9231 0.9445 0.7027 0.2126

0.35 0.9761 0.9188 0.9413 0.7205 0.2187

0.36 0.9747 0.9143 0.9380 0.7380 0.2248

0.37 0.9733 0.9098 0.9347 0.7553 0.2309

0.38 0.9719 0.9052 0.9313 0.7723 0.2369

0.39 0.9705 0.9004 0.9278 0.7891 0.2430
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Table C.1 Compressible Flow for a Perfect Gas, γ = 1.4 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.40 0.9690 0.8956 0.9243 0.8056 0.2490

0.41 0.9675 0.8907 0.9207 0.8219 0.2551

0.42 0.9659 0.8857 0.9170 0.8379 0.2611

0.43 0.9643 0.8807 0.9132 0.8536 0.2671

0.44 0.9627 0.8755 0.9094 0.8691 0.2730

0.45 0.9611 0.8703 0.9055 0.8843 0.2790

0.46 0.9594 0.8650 0.9016 0.8992 0.2850

0.47 0.9577 0.8596 0.8976 0.9138 0.2909

0.48 0.9559 0.8541 0.8935 0.9282 0.2968

0.49 0.9542 0.8486 0.8894 0.9423 0.3027

0.50 0.9524 0.8430 0.8852 0.9561 0.3086

0.51 0.9506 0.8374 0.8809 0.9696 0.3145

0.52 0.9487 0.8317 0.8766 0.9828 0.3203

0.53 0.9468 0.8259 0.8723 0.9958 0.3262

0.54 0.9449 0.8201 0.8679 1.0084 0.3320

0.55 0.9430 0.8142 0.8634 1.0208 0.3378

0.56 0.9410 0.8082 0.8589 1.0328 0.3436

0.57 0.9390 0.8022 0.8544 1.0446 0.3493

0.58 0.9370 0.7962 0.8498 1.0561 0.3551

0.59 0.9349 0.7901 0.8451 1.0672 0.3608

0.60 0.9328 0.7840 0.8405 1.0781 0.3665

0.61 0.9307 0.7778 0.8357 1.0887 0.3722

0.62 0.9286 0.7716 0.8310 1.0990 0.3779

0.63 0.9265 0.7654 0.8262 1.1090 0.3835

0.64 0.9243 0.7591 0.8213 1.1186 0.3891

0.65 0.9221 0.7528 0.8164 1.1280 0.3948

0.66 0.9199 0.7465 0.8115 1.1371 0.4003

0.67 0.9176 0.7401 0.8066 1.1459 0.4059

0.68 0.9153 0.7338 0.8016 1.1544 0.4115

0.69 0.9131 0.7274 0.7966 1.1626 0.4170

0.70 0.9107 0.7209 0.7916 1.1705 0.4225

0.71 0.9084 0.7145 0.7865 1.1782 0.4280

0.72 0.9061 0.7080 0.7814 1.1855 0.7016

0.73 0.9037 0.7016 0.7763 1.1925 0.4389

0.74 0.9013 0.6951 0.7712 1.1993 0.4443

0.75 0.8989 0.6886 0.7660 1.2058 0.4497

0.76 0.8964 0.6821 0.7609 1.2119 0.4551

0.77 0.8940 0.6756 0.7557 1.2178 0.4605

0.78 0.8915 0.6691 0.7505 1.2234 0.4658

0.79 0.8890 0.6625 0.7452 1.2288 0.4711

Continued
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Table C.1 Compressible Flow for a Perfect Gas, γ = 1.4 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.80 0.8865 0.6560 0.7400 1.2338 0.4764

0.81 0.8840 0.6495 0.7347 1.2386 0.4817

0.82 0.8815 0.6430 0.7295 1.2431 0.4869

0.83 0.8789 0.6365 0.7242 1.2474 0.4921

0.84 0.8763 0.6300 0.7189 1.2514 0.4973

0.85 0.8737 0.6235 0.7136 1.2551 0.5025

0.86 0.8711 0.6170 0.7083 1.2585 0.5077

0.87 0.8685 0.6106 0.7030 1.2617 0.5128

0.88 0.8659 0.6041 0.6977 1.2646 0.5179

0.89 0.8632 0.5977 0.6924 1.2673 0.5230

0.90 0.8606 0.5913 0.6870 1.2698 0.5280

0.91 0.8579 0.5849 0.6817 1.2719 0.5331

0.92 0.8552 0.5785 0.6764 1.2739 0.5381

0.93 0.8525 0.5721 0.6711 1.2756 0.5431

0.94 0.8498 0.5658 0.6658 1.2770 0.5481

0.95 0.8471 0.5595 0.6604 1.2783 0.5530

0.96 0.8444 0.5532 0.6551 1.2793 0.5579

0.97 0.8416 0.5469 0.6498 1.2800 0.5628

0.98 0.8389 0.5407 0.6445 1.2806 0.5677

0.99 0.8361 0.5345 0.6392 1.2809 0.5725

1.00 0.8333 0.5283 0.6339 1.2810 0.5774

1.01 0.8306 0.5221 0.6287 1.2809 0.5821

1.02 0.8278 0.5160 0.6234 1.2806 0.5869

1.03 0.8250 0.5099 0.6181 1.2801 0.5917

1.04 0.8222 0.5039 0.6129 1.2793 0.5964

1.05 0.8193 0.4979 0.6077 1.2784 0.6011

1.06 0.8165 0.4919 0.6024 1.2773 0.6058

1.07 0.8137 0.4860 0.5972 1.2760 0.6104

1.08 0.8108 0.4800 0.5920 1.2745 0.6151

1.09 0.8080 0.4742 0.5869 1.2728 0.6197

1.10 0.8052 0.4684 0.5817 1.2709 0.6243

1.11 0.8023 0.4626 0.5766 1.2689 0.6288

1.12 0.7994 0.4568 0.5714 1.2667 0.6333

1.13 0.7966 0.4511 0.5663 1.2643 0.6379

1.14 0.7937 0.4455 0.5612 1.2618 0.6423

1.15 0.7908 0.4398 0.5562 1.2590 0.6468

1.16 0.7879 0.4343 0.5511 1.2562 0.6512

1.17 0.7851 0.4287 0.5461 1.2531 0.6556

1.18 0.7822 0.4232 0.5411 1.2500 0.6600

1.19 0.7793 0.4178 0.5361 1.2466 0.6644
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Table C.1 Compressible Flow for a Perfect Gas, γ = 1.4 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
1.20 0.7764 0.4124 0.5311 1.2432 0.6687

1.21 0.7735 0.4070 0.5262 1.2396 0.6730

1.22 0.7706 0.4017 0.5213 1.2358 0.6773

1.23 0.7677 0.3964 0.5164 1.2319 0.6816

1.24 0.7648 0.3912 0.5115 1.2279 0.6858

1.25 0.7619 0.3861 0.5067 1.2238 0.6901

1.26 0.7590 0.3809 0.5019 1.2195 0.6943

1.27 0.7561 0.3759 0.4971 1.2152 0.6984

1.28 0.7532 0.3708 0.4923 1.2107 0.7026

1.29 0.7503 0.3658 0.4876 1.2061 0.7067

1.30 0.7474 0.3609 0.4829 1.2014 0.7108

1.31 0.7445 0.3560 0.4782 1.1965 0.7149

1.32 0.7416 0.3512 0.4736 1.1916 0.7189

1.33 0.7387 0.3464 0.4690 1.1866 0.7229

1.34 0.7358 0.3417 0.4644 1.1815 0.7270

1.35 0.7329 0.3370 0.4598 1.1763 0.7309

1.36 0.7300 0.3323 0.4553 1.1710 0.7349

1.37 0.7271 0.3277 0.4508 1.1656 0.7388

1.38 0.7242 0.3232 0.4463 1.1601 0.7427

1.39 0.7213 0.3187 0.4418 1.1546 0.7466

1.40 0.7184 0.3142 0.4374 1.1490 0.7505

1.41 0.7155 0.3098 0.4330 1.1433 0.7543

1.42 0.7126 0.3055 0.4287 1.1375 0.7581

1.43 0.7097 0.3012 0.4244 1.1317 0.7619

1.44 0.7069 0.2969 0.4201 1.1258 0.7657

1.45 0.7040 0.2927 0.4158 1.1198 0.7694

1.46 0.7011 0.2886 0.4116 1.1138 0.7732

1.47 0.6982 0.2845 0.4074 1.1077 0.7769

1.48 0.6954 0.2804 0.4032 1.1016 0.7805

1.49 0.6925 0.2764 0.3991 1.0954 0.7842

1.50 0.6897 0.2724 0.3950 1.0891 0.7878

1.51 0.6868 0.2685 0.3909 1.0829 0.7914

1.52 0.6840 0.2646 0.3869 1.0765 0.7950

1.53 0.6811 0.2608 0.3829 1.0702 0.7986

1.54 0.6783 0.2570 0.3789 1.0638 0.8021

1.55 0.6754 0.2533 0.3750 1.0573 0.8057

1.56 0.6726 0.2496 0.3710 1.0508 0.8092

1.57 0.6698 0.2459 0.3672 1.0443 0.8126

1.58 0.6670 0.2423 0.3633 1.0378 0.8161

1.59 0.6642 0.2388 0.3595 1.0312 0.8195
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Table C.1 Compressible Flow for a Perfect Gas, γ = 1.4 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
1.60 0.6614 0.2353 0.3557 1.0246 0.8230

1.61 0.6586 0.2318 0.3520 1.0180 0.8263

1.62 0.6558 0.2284 0.3483 1.0114 0.8297

1.63 0.6530 0.2250 0.3446 1.0047 0.8331

1.64 0.6502 0.2217 0.3409 0.9980 0.8364

1.65 0.6475 0.2184 0.3373 0.9913 0.8397

1.66 0.6447 0.2151 0.3337 0.9846 0.8430

1.67 0.6419 0.2119 0.3302 0.9779 0.8462

1.68 0.6392 0.2088 0.3266 0.9712 0.8495

1.69 0.6364 0.2057 0.3232 0.9644 0.8527

1.70 0.6337 0.2026 0.3197 0.9577 0.8559

1.71 0.6310 0.1996 0.3163 0.9509 0.8591

1.72 0.6283 0.1966 0.3129 0.9442 0.8622

1.73 0.6256 0.1936 0.3095 0.9374 0.8654

1.74 0.6229 0.1907 0.3062 0.9307 0.8685

1.75 0.6202 0.1878 0.3029 0.9239 0.8716

1.76 0.6175 0.1850 0.2996 0.9172 0.8747

1.77 0.6148 0.1822 0.2964 0.9104 0.8777

1.78 0.6121 0.1794 0.2931 0.9037 0.8808

1.79 0.6095 0.1767 0.2900 0.8970 0.8838

1.80 0.6068 0.1740 0.2868 0.8902 0.8868

1.81 0.6041 0.1714 0.2837 0.8835 0.8898

1.82 0.6015 0.1688 0.2806 0.8768 0.8927

1.83 0.5989 0.1662 0.2776 0.8701 0.8957

1.84 0.5963 0.1637 0.2745 0.8634 0.8986

1.85 0.5936 0.1612 0.2715 0.8568 0.9015

1.86 0.5910 0.1587 0.2686 0.8501 0.9044

1.87 0.5884 0.1563 0.2656 0.8435 0.9072

1.88 0.5859 0.1539 0.2627 0.8368 0.9101

1.89 0.5833 0.1516 0.2598 0.8302 0.9129

1.90 0.5807 0.1492 0.2570 0.8237 0.9157

1.91 0.5782 0.1470 0.2542 0.8171 0.9185

1.92 0.5756 0.1447 0.2514 0.8106 0.9213

1.93 0.5731 0.1425 0.2486 0.8041 0.9240

1.94 0.5705 0.1403 0.2459 0.7976 0.9268

1.95 0.5680 0.1381 0.2432 0.7911 0.9295

1.96 0.5655 0.1360 0.2405 0.7846 0.9322

1.97 0.5630 0.1339 0.2378 0.7782 0.9349

1.98 0.5605 0.1318 0.2352 0.7718 0.9375

1.99 0.5580 0.1298 0.2326 0.7655 0.9402

2.00 0.5556 0.1278 0.2300 0.7591 0.9428
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Table C.2 Compressible Flow for a Perfect Gas, γ = 1.333

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.00 1.0000 1.0000 1.0000 0.0000 0.0000

0.01 1.0000 0.9999 1.0000 0.0231 0.0058

0.02 0.9999 0.9997 0.9998 0.0462 0.0115

0.03 0.9999 0.9994 0.9996 0.0693 0.0173

0.04 0.9997 0.9989 0.9992 0.0923 0.0231

0.05 0.9996 0.9983 0.9988 0.1153 0.0288

0.06 0.9994 0.9976 0.9982 0.1383 0.0346

0.07 0.9992 0.9967 0.9976 0.1612 0.0404

0.08 0.9989 0.9957 0.9968 0.1841 0.0461

0.09 0.9987 0.9946 0.9960 0.2069 0.0519

0.10 0.9983 0.9934 0.9950 0.2297 0.0577

0.11 0.9980 0.9920 0.9940 0.2523 0.0634

0.12 0.9976 0.9905 0.9928 0.2749 0.0692

0.13 0.9972 0.9888 0.9916 0.2974 0.0749

0.14 0.9967 0.9870 0.9903 0.3197 0.0807

0.15 0.9963 0.9851 0.9888 0.3420 0.0864

0.16 0.9958 0.9831 0.9873 0.3641 0.0921

0.17 0.9952 0.9810 0.9857 0.3861 0.0979

0.18 0.9946 0.9787 0.9840 0.4080 0.1036

0.19 0.99402 0.9763 0.982 0.4298 0.1093

0.20 0.9934 0.9738 0.9803 0.4514 0.1150

0.21 0.9927x 0.9711 0.9783 0.4728 0.4728

0.22 0.9920 0.9684 0.9762 0.4941 0.1264

0.23 0.9913 0.9655 0.9740 0.5152 0.1321

0.24 0.9905 0.9625 0.9717 0.5362 0.1378

0.25 0.9897 0.9594 0.9694 0.5569 0.1435

0.26 0.9889 0.9562 0.9669 0.5775 0.1492

0.27 0.9880 0.9529 0.9644 0.5979 0.1549

0.28 0.9871 0.9494 0.9618 0.6181 0.1605

0.29 0.9862 0.9459 0.9591 0.6380 0.1662

0.30 0.9852 0.9422 0.9563 0.6578 0.1718

0.31 0.9843 0.9384 0.9534 0.6774 0.1775

0.32 0.9832 0.9346 0.9505 0.6967 0.1831

0.33 0.9822 0.9306 0.9475 0.7158 0.1887

0.34 0.9811 0.9265 0.9444 0.7347 0.1943

0.35 0.9800 0.9224 0.9412 0.7533 0.1999

0.36 0.9789 0.9181 0.9379 0.7717 0.2055

0.37 0.9777 0.9137 0.9346 0.7898 0.2111

0.38 0.9765 0.9093 0.9311 0.8077 0.2167

0.39 0.9753 0.9047 0.9276 0.8253 0.2223
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Table C.2 Compressible Flow for a Perfect Gas, γ = 1.333 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.40 0.9741 0.9001 0.9241 0.8427 0.2278

0.41 0.9728 0.8954 0.9204 0.2334 0.8598

0.42 0.9715 0.8906 0.8906 0.8766 0.2389

0.43 0.9701 0.8857 0.9130 0.8932 0.2444

0.44 0.9688 0.8807 0.9091 0.9095 0.2499

0.45 0.9674 0.8757 0.9052 0.9255 0.2554

0.46 0.9660 0.8706 0.9012 0.9412 0.2609

0.47 0.9645 0.8654 0.8972 0.9567 0.2664

0.48 0.9631 0.8601 0.8931 0.9718 0.2718

0.49 0.9616 0.8548 0.8890 0.9867 0.2773

0.50 0.9600 0.8494 0.8847 1.0012 0.2827

0.51 0.9585 0.8439 0.8805 1.0155 0.2881

0.52 0.9569 0.8384 0.8761 1.0295 0.2935

0.53 0.9553 0.8328 0.8717 1.0431 0.2989

0.54 0.9537 0.8271 0.8673 1.0565 0.3043

0.55 0.9520 0.8214 0.8628 1.0696 0.3097

0.56 0.9504 0.8157 0.8583 1.0823 0.3150

0.57 0.9487 0.8099 0.8537 1.0948 0.3204

0.58 0.9470 0.8040 0.8490 1.1069 0.3257

0.59 0.9452 0.7981 0.8443 1.1188 0.3310

0.60 0.9434 0.7921 0.8396 1.1303 0.3363

0.61 0.9417 0.7861 0.8348 1.1415 0.3416

0.62 0.9398 0.7801 0.8300 1.1524 0.3469

0.63 0.9380 0.7740 0.8252 1.1630 0.3521

0.64 0.9362 0.7679 0.8203 1.1733 0.3573

0.65 0.9343 0.7618 0.8153 1.1833 0.3626

0.66 0.9324 0.7556 0.8104 1.1930 0.3678

0.67 0.9305 0.7494 0.8054 1.2023 0.3729

0.68 0.9285 0.7431 0.8003 1.2114 0.3781

0.69 0.9266 0.7368 0.7953 1.2201 0.3833

0.70 0.9246 0.7306 0.7902 1.2285 0.3884

0.71 0.9226 0.7242 0.7850 1.2367 0.3935

0.72 0.9205 0.7179 0.7799 1.2445 0.3986

0.73 0.9185 0.7116 0.7747 1.2520 0.4037

0.74 0.9164 0.7052 0.7695 1.2592 0.4088

0.75 0.9144 0.6988 0.7643 1.2661 0.4139

0.76 0.9123 0.6924 0.7590 1.2727 0.4189

0.77 0.9102 0.6860 0.7537 1.2790 0.4239

0.78 0.9080 0.6796 0.7484 1.2850 0.4289

0.79 0.9059 0.6732 0.7431 1.2907 0.4339
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Table C.2 Compressible Flow for a Perfect Gas, γ = 1.333 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
0.80 0.9037 0.6668 0.7378 1.2961 0.4389

0.81 0.9015 0.6603 0.7325 1.3013 0.4438

0.82 0.8993 0.6539 0.7271 1.3061 0.4487

0.83 0.8971 0.6475 0.7217 1.3107 0.4536

0.84 0.8949 0.6411 0.7164 1.3149 0.4585

0.85 0.8926 0.6346 0.7110 1.3189 0.4634

0.86 0.8904 0.6282 0.7056 1.3226 0.4683

0.87 0.8881 0.6218 0.7002 1.3260 0.4731

0.88 0.8858 0.6154 0.6948 1.3292 0.4779

0.89 0.8835 0.6090 0.6893 1.3321 0.4827

0.90 0.8812 0.6026 0.6839 1.3347 0.4875

0.91 0.8788 0.5963 0.6785 1.3370 0.4923

0.92 0.8765 0.5899 0.6731 1.3391 0.4970

0.93 0.8741 0.5836 0.6676 1.3410 0.5018

0.94 0.8717 0.5773 0.6622 1.3425 0.5065

0.95 0.8694 0.5710 0.6568 1.3439 0.5111

0.96 0.8670 0.5647 0.6514 1.3449 0.5158

0.97 0.8646 0.5585 0.6459 1.3458 0.5205

0.98 0.8621 0.5522 0.6405 1.3464 0.5251

0.99 0.8597 0.5460 0.6351 1.3467 0.5297

1.00 0.8573 0.5398 0.6297 1.3468 0.5343

1.01 0.8548 0.5337 0.6243 1.3467 0.5389

1.02 0.8524 0.5276 1.3464 0.6189 0.5434

1.03 0.8499 0.5215 0.6136 1.3458 0.5479

1.04 0.8474 0.5154 0.6082 1.3450 0.5525

1.05 0.8449 0.5093 0.6028 1.3440 0.5569

1.06 0.8424 0.5033 0.5975 1.3428 0.5614

1.07 0.8399 0.4974 0.5922 1.3414 0.5659

1.08 0.8374 0.4914 0.5869 1.3397 0.5703

1.09 0.8349 0.4855 0.5816 1.3379 0.5747

1.10 0.8323 0.4796 0.5763 1.3359 0.5791

1.11 0.8298 0.4738 0.5710 1.3337 0.5835

1.12 0.8272 0.4680 0.5658 1.3313 0.5878

1.13 0.8247 0.4622 0.5605 1.3287 0.5922

1.14 0.8221 0.4565 0.5553 1.3259 0.5965

1.15 0.8195 0.4508 0.5501 1.3229 0.6008

1.16 0.8170 0.4452 0.5449 1.3198 0.6050

1.17 0.8144 0.4396 0.5398 1.3165 0.6093

1.18 0.8118 0.4340 0.5347 1.3131 0.6135

1.19 0.8092 0.4285 0.5295 1.3094 0.6177

Continued

Appendix C: Tables for the Compressible Flow of a Perfect Gas 441



Table C.2 Compressible Flow for a Perfect Gas, γ = 1.333 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
1.20 0.8066 0.4230 0.5245 1.3057 0.6219

1.21 0.8040 0.4176 0.5194 1.3017 0.6261

1.22 0.8014 0.4122 0.5143 1.2976 0.6302

1.23 0.7988 0.4068 0.5093 1.2934 0.6344

1.24 0.7962 0.4015 0.5043 1.2890 0.6385

1.25 0.7936 0.3963 0.4994 1.2845 0.6426

1.26 0.7909 0.3911 0.4944 1.2798 0.6466

1.27 0.7883 0.3859 0.4895 1.2751 0.6507

1.28 0.7857 0.3808 0.4846 1.2701 0.6547

1.29 0.7830 0.3757 0.4798 1.2651 0.6587

1.30 0.7804 0.3706 0.4749 1.2599 0.6627

1.31 0.7778 0.3657 0.4701 1.2547 0.6667

1.32 0.7751 0.3607 0.4654 1.2493 0.6706

1.33 0.7725 0.3558 0.4606 1.2438 0.6746

1.34 0.7698 0.3510 0.4559 1.2382 0.6785

1.35 0.7672 0.3462 0.4512 1.2325 0.6824

1.36 0.7646 0.3414 0.4465 1.2266 0.6862

1.37 0.7619 0.3367 0.4419 1.2207 0.6901

1.38 0.7593 0.3320 0.4373 1.2147 0.6939

1.39 0.7566 0.3274 0.4328 1.2086 0.6977

1.40 0.7540 0.3229 0.4282 1.2025 0.7015

1.41 0.7513 0.3183 0.4237 1.1962 0.7053

1.42 0.7487 0.3139 0.4192 1.1899 0.7090

1.43 0.7460 0.3094 0.4148 1.1835 0.7127

1.44 0.7434 0.3051 0.4104 1.1770 0.7164

1.45 0.7407 0.3007 0.4060 1.1704 0.7201

1.46 0.7381 0.2965 0.4017 1.1638 0.7238

1.47 0.7354 0.2922 0.3974 1.1571 0.7275

1.48 0.7328 0.2880 0.3931 1.1504 0.7311

1.49 0.7301 0.2839 0.3888 1.1367 0.7347

1.50 0.7275 0.2798 0.3846 1.1367 0.7383

1.51 0.7248 0.2758 0.3804 1.1298 0.7419

1.52 0.7222 0.2718 0.3763 1.1228 0.7454

1.53 0.7195 0.2678 0.3722 1.1158 0.7489

1.54 0.7169 0.2639 0.3681 1.1087 0.7524

1.55 0.7143 0.2600 0.3641 1.1016 0.7559

1.56 0.7116 0.2562 0.3600 1.0945 0.7594

1.57 0.7090 0.2524 0.3561 1.0873 0.7629

1.58 0.7064 0.2487 0.3521 1.0801 0.7663

1.59 0.7038 0.2450 0.3482 1.0729 0.7697
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Table C.2 Compressible Flow for a Perfect Gas, γ = 1.333 Continued

M T/T0 p/p0 ρ/ρ0 _m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CPT 0

p
/Anp0 c /

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CpT 0

p
1.60 0.7011 0.2414 0.3443 1.0656 0.7731

1.61 0.6985x 0.2378 0.3405 1.0583 1.0583

1.62 0.6959 0.2343 0.3367 1.0510 0.7799

1.63 0.6933 0.2308 0.3329 1.0436 0.7832

1.64 0.6907 0.2273 0.3291 1.0363 0.7865

1.65 0.6881 0.2239 0.3254 1.0289 0.7898

1.66 0.6855 0.2206 0.3217 1.0215 0.7931

1.67 0.6829 0.2172 0.3181 1.0141 0.7964

1.68 0.6803 0.2139 0.3145 1.0066 0.7996

1.69 0.6777 0.2107 0.3109 0.9992 0.8028

1.70 0.6751 0.2075 0.3074 0.9918 0.8061

1.71 0.6726 0.2044 0.3039 0.9843 0.8093

1.72 0.6700 0.2012 0.3004 0.9769 0.8124

1.73 0.6674 0.1982 0.2969 0.9694 0.8156

1.74 0.6649 0.1951 0.2935 0.9620 0.8187

1.75 0.6623 0.1922 0.2901 0.9545 0.8218

1.76 0.6597 0.1892 0.2868 0.9471 0.8249

1.77 0.6572 0.1863 0.2835 0.9396 0.8280

1.78 0.6546 0.1834 0.2802 0.9322 0.8311

1.79 0.6521 0.1806 0.2770 0.9248 0.8341

1.80 0.6496 0.1778 0.2737 0.9173 0.8372

1.81 0.6471 0.1751 0.2706 0.9099 0.8402

1.82 0.6445 0.1723 0.2674 0.9025 0.8432

1.83 0.6420 0.1697 0.2643 0.8951 0.8461

1.84 0.6395 0.1670 0.2612 0.8878 0.8491

1.85 0.6370 0.1644 0.2581 0.8804 0.8521

1.86 0.6345 0.1619 0.2551 0.8731 0.8550

1.87 0.6320 0.1593 0.2521 0.8658 0.8579

1.88 0.6295 0.1568 0.2491 0.8585 0.8608

1.89 0.6271 0.1544 0.2462 0.8512 0.8636

1.90 0.6246 0.1520 0.2433 0.8439 0.8665

1.91 0.6221 0.1496 0.2404 0.8367 0.8693

1.92 0.6197 0.1472 0.2376 0.8295 0.8722

1.93 0.6172 0.1449 0.2348 0.8223 0.8750

1.94 0.6148 0.1426 0.2320 0.8152 0.8778

1.95 0.6123 0.1404 0.2292 0.8081 0.8805

1.96 0.6099 0.1382 0.2265 0.8010 0.8833

1.97 0.6075 0.1360 0.2238 0.7939 0.8860

1.98 0.6051 0.1338 0.2212 0.7869 0.8888

1.99 0.6026 0.1317 0.2185 0.7799 0.8915

2.00 0.6002 0.1296 0.2159 0.7729 0.8942
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Appendix D: Conversion of British and
American Units to SI Units

Length Force
1 inch ¼ 0.0254 m 1 lbf ¼ 4.448 N
1 foot ¼ 0.3048 m 1 ton f (UK) ¼ 9.964 kN

Area Pressure
1 in2 ¼ 6.452� 10�4 m2 1 lbf/in2 ¼ 6.895 kPa
1 ft2 ¼ 0.09290 m2 1 ft H2O ¼ 2.989 kPa

1 in Hg ¼ 3.386 kPa
1 bar ¼ 100.0 kPa

Volume Energy
1 in3 ¼ 16.39 cm3 1 ft lbf ¼ 1.356 J
1 ft3 ¼ 28.32 dm3 1 Btu ¼ 1.055 kJ

¼ 0.02832 m3

1 gall (UK) ¼ 4.546 dm3

1 gall (US) ¼ 3.785 dm3

Velocity Specific energy
1 ft/s ¼ 0.3048 m/s 1 ft lbf/lb ¼ 2.989 J/kg
1 mile/h ¼ 0.447 m/s 1 Btu/lb ¼ 2.326 kJ/kg

Mass Specific heat capacity
1 lb ¼ 0.4536 kg 1 ft lbf/(lb° F) ¼ 5.38 J/(kg° C)
1 ton (UK) ¼ 1016 kg 1 ft lbf/(slug° F) ¼ 0.167 J/(kg° C)

1 Btu/(lb° F) ¼ 4.188 kJ/(kg° C)

Density Power
1 lb/ft3 ¼ 16.02 kg/m3 1 hp ¼ 0.7457 kW
1 slug/ft3 ¼ 515.4 kg/m3

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00015-8
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Appendix E: Answers to Problems

CHAPTER 1
1. 88.1%.
2. (i) 704 K; (ii) 750 K; (iii) 668 K.
3. (i) 500 K, 0.313 m3/kg; (ii) 1.042.
4. 49.1 kg/s; 24 mm.
5. (i) 630 kPa, 275°C; 240 kPa; 201°C; 85 kPa, 126°C;

(ii) 0.638, 0.655, 0.688, 0.726, 0.739; (iii) 0.739, 0.724; (iv) 1.075.

CHAPTER 2
1. 6.29 m3/s.
2. 9.15 m/s; 5.33 atm.
4. 551 rev/min, 1:10.8; 0.885 m3/s; 17.85 MN.
5. 4030 rev/min; 31.4 kg/s.
6. (a) Ωs¼ 0.501 (rad); Ds¼ 4.949; P¼ 3.658 kW; (b) H¼ 61.18 m, Q¼ 0.6402 m3/s, P¼ 468 kW.

CHAPTER 3
1. 49.8°.
2. 0.77; CD¼ 0.048, CL¼ 2.245.
3. �1.3°, 9.5°, 1.11.
4. (i) 53° and 29.5°; (ii) 0.962; (iii) 2.17 kN/m2.
5. (a) s/l¼ 1.0, α2¼ 24.8°; (b) CL¼ 0.872.
6. (b) 57.8°; (c) (i) 357 kPa; (ii) 0.96; (iii) 0.0218, 1.075.
7. 141.2 kg/(sm2), 0.40, 1.30.
8. 0.058.
9. (a) 1.21; (c) 0.19.

CHAPTER 4
2. (i) 88%; (ii) 86.17%; (iii) 1170.6 K.
3. α2¼ 70°, β2¼ 7.02°, α3¼ 18.4°, β3¼ 50.37°.
4. 22.7 kJ/kg; 420 kPa, 117°C.
5. 91%.
6. (i) 1.503; (ii) 39.9°, 59°; (iii) 0.25; (iv) 90.5 and 81.6%.
7. (i) 488 m/s; (ii) 266.1 m/s; (iii) 0.83; (iv) 0.128.
8. (i) 215 m/s; (ii) 0.098, 2.68; (iii) 0.872; (iv) 265°C, 0.75 MPa.
9. (a) (i) 601.9 m/s; (ii) 282.8 m/s; (iii) 79.8%. (b) 89.23%.

© 2010 S. L. Dixon and C. A. Hall. Published by Elsevier Inc. All rights reserved.
DOI: 10.1016/B978-1-85617-793-1.00016-X
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10. (b) (i) 130.9 kJ/kg, (ii) 301.6 m/s, (iii) 707.6 K; (c) (i) 10,200 rev/min, (ii) 0.565 m, (iii) 0.845.
11. (ii) 0.2166; (iii) 8740 rev/min. (iv) 450.7 m/s, 0.846.
12. 1.07, 0.464.
13. 0.908.

CHAPTER 5
1. 14 stages.
2. 30.6°C.
3. 132.5 m/s, 56.1 kg/s; 10.1 MW.
4. 86.5%; 9.28 MW.
5. 0.59, 0.415.
6. (a) 0.88; (b) 0.571.
7. 56.9°, 41°, 21.8°.
8. (i) 244.7 m/s; (ii) 25.42 kg/s, 16,866 rev/min; (iii) 38.33 kJ/kg; (iv) 84.7%; (v) 5.135 stages, 0.9743MW;

(vi) with five stages and the same loading, then the pressure ratio is 5.781; however, to maintain a
pressure ratio of 6.0, the specific work must be increased to 39.37 kJ/kg; with five stages the weight
and cost would be lower.

9. (a) 16.22°, 22.08°, 33.79°; (b) 467.2 Pa, 7.42 m/s.
10. (i) β1¼ 70.79°, β2¼ 68.24°; (ii) 83.96%; (iii) 399.3 Pa; (iv) 7.144 cm.
11. (i) 141.1 Pa, 0.588; (ii) 60.48 Pa; (iii) 70.14%.

CHAPTER 6
1. 55° and 47°.
2. 0.602, 1.38, �0.08 (i.e., implies large losses near hub).
4. 70.7 m/s.
5. Work done is constant at all radii:

c2x1 ¼ constant� 2a2½ðr2 � 1Þ� 2ðb=aÞln r�;
c2x2 ¼ constant� 2a2½ðr2 � 1Þ� 2ðb=aÞln r�;

β1 ¼ 43.2�, β2 ¼ 10.4�.

6. (i) 480 m/s; (ii) 0.818; (iii) 0.08; (iv) 3.42 MW; (v) 906.8 K, 892.2 K.
7. (i) 62°; (ii) 61.3° and 7.6°; (iii) 45.2° and 55.9°; (iv) �0.175, 0.477.
8. See Figure 6.13. For (i) at x/rt¼ 0.05, cx¼ 113.2 m/s.

CHAPTER 7
1. (i) 27.9 m/s; (ii) 880 rev/min, 0.604 m; (iii) 182 W; (iv) 0.0526 (rad).
2. 579 kW; 169 mm; 50.0.
3. 0.875; 5.61 kg/s.
4. 26,800 rev/min; 0.203 m, 0.525.
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5. 0.735, 90.5%.
6. (i) 542.5 kW; (ii) 536 and 519 kPa; (iii) 586 and 240.8 kPa, 1.20, 176 m/s; (iv) 0.875; (v) 0.22;

(vi) 28,400 rev/min.
7. (i) 29.4 dm3/s; (ii) 0.781; (iii) 77.7°; (iv) 7.82 kW.
8. (i) 14.11 m; (ii) 2.635 m; (iii) 0.7664; (iv) 17.73 m; (v) 13.8 kW; σs¼ 0.722, σB¼ 0.752.
9. (a) See text; (b) (i) 32,214 rev/min, (ii) 5.246 kg/s; (c) (i) 1.254 MW, (ii) 6.997.

10. (a) Cp¼� 0.61, A2/A1 � 2.2, ηD � 0.769, 2θ � 11°; (b) 8.65 kPa
11. Bookwork: (i) 516 K, 172.8 kPa, 0.890; (ii) M2¼ 0.281, M2¼ 0.930,
12. (i) 0.880; (ii) 314.7 kPa; (iii) 1.414 kg/s.
13. (a) 7.358 kW; (b) 275.8 rpm, 36.7 kW.
14. (a) ΔW¼ 101.7 J/(kg K), power¼ 13.07 kW; (b) Ωs¼ 0.504 (rad), Ds¼ 5.035.
15. M2¼ 0.4482, c2¼ 140.8 m/s.
16. (i) 465 m/s, 0.740 m; (ii) 0.546 (rad).
17. rs1¼ 0.164 m, M1¼ 0.275.
18. (i) 372.7 m/s; (ii) 156 m/s; (iii) 0.4685; (iv) 0.046 m2.

CHAPTER 8
1. 586 m/s, 73.75°.
2. (i) 205.8 kPa, 977 K; (ii) 125.4 mm, 89,200 rev/min; (iii) 1 MW.
3. (i) 90.3%; (ii) 269 mm; (iii) 0.051, 0.223.
4. 1593 K.
5. 2.159 m3/s, 500 kW.
6. (i) 10.089 kg/s, 23,356 rev/min; (ii) 9.063� 105, 1.879� 106.
7. (i) 81.82%; (ii) 890 K, 184.3 kPa; (iii) 1.206 cm; (iv) 196.3 m/s; (v) 0.492; (vi) rs3¼ 6.59 m,

rh3 ¼ 2.636 cm.
9. (i) 190.3 m/s; (ii) 85.7°C.

10. S¼ 0.1648, ηts¼ 0.851.
11. Bookwork
12. (i) 4.218; (ii) 627.6 m/s, M3¼ 0.896.
13. (i) S¼ 0.1824, β2¼ 32.2°, α2¼ 73.9°; (ii) U2 ¼ 518.3 m/s; (iii) T3¼ 851.4 K; (iv) N¼ 38,956 rpm,

D2¼ 0.254m,Ωs¼ 0.5685, which corresponds (approximately) to the maximum of ηts in Figure 8.15.
14. (i) 361.5 kPa; (ii) 0.8205.
15. (i) α2¼ 73.9°, β2¼ 32.2°; (ii) 2.205; (iii) 486.2 m/s.
16. (i) 0.3194 m, 29.073 rpm; (ii) ζR¼ 0.330, ζN¼ 0.0826.

CHAPTER 9
1. (i) 224 kW; (ii) 0.2162 m3/s; (iii) 6.423.
2. (a) 2.138 m; (b) For d¼ 2.2 m, (i) 17.32 m; (ii) 59.87 m/s, 40.3 MW.
3. (i) 378.7 rev/min; (ii) 6.906 MW, 0.252 (rad); (iii) 0.783; (iv) 3.
4. Head loss in pipline is 17.8 m. (i) 672.2 rev/min; (ii) 84.5%; (iii) 6.735 MW; (iv) 2.59%.
5. (i) 12.82 MW, 8.69 m3/s; (ii) 1.0 m; (iii) 37.6 m/s; (iv) 0.226 m.
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6. (i) 663.2 rev/min; (ii) 69.55°, 59.2°; (iii) 0.152 m and 0.169 m.
7. (b) (i) 1.459 (rad), (ii) 107.6 m3/s, (iii) 3.153 m, 15.52 m/s; (c) (i) 398.7 rev/min, 0.456 m2/s;

(ii) 20.6 kW (uncorrected), 19.55 kW (corrected), (iii) 4.06 (rad), (d) Hs � Ha¼�2.18 m.
8. (i) 0.94; (ii) 115.2 rev/min, 5.068 m; (iii) 197.2 m2/s; (iv) 0.924 m.
9. (i) 11.4 m3/s, 19.47 MW; (ii) 72.6°, 75.04° at tip; (iii) 25.73°, 59.54° at hub.

10. (i) 6 turbines required; (ii) 0.958 m; (iii) 1.861 m3/s.
11. (a) 0.498 m; (b) 28.86 m.
12. (i) 0.262 (rad); (ii) 0.603; (iii) 33.65 m3/s.
13. α2¼ 50.32°, β2¼ 52.06°, 0.336 m, Ωsp¼ 2.27 (rad); Yes, it is consistent with stated efficiency.
14. (a) (i) 390.9 kW, (ii) 1.733 m3/s, (iii) 0.767 m and 15.06 m/s, (iv) α2¼ 65.17° and β2¼ 0.57°;

(b) σ ¼ 0.298, at Ωsp¼ 0.8, σc¼ 0.1 the turbine is well clear of cavitation (see Figure 9.21).
15. (i) 649.5 rev/min and 0.024 m3/s; (ii) 0.650 kW; (iii) 0.579 kW.
16. (i) 110.8 m3/s; (ii) 100 rpm and 3.766 m; (iii) α2¼ 49.26° and β2¼�39.08°.
17. At hub, α2¼ 49.92°, β2¼ 28.22°; at mean radius, α2¼ 38.64°, β2¼ 60.46°; at tip, α2¼ 31.07°,

β2 ¼ 70.34°.
18. (a) 0.8495; (b) 250 rpm, 90 m3/s, 22.5 MW; (c) NSP¼ 30.77 rpm for model and 31.73 for

prototype.

CHAPTER 10
1. Cp¼ 0.303, ζ¼ 0.51.
2. a ¼ 0:0758 and Δp¼ 14.78 Pa.
3. (a) Cp¼ 0.35, ζ¼ 0.59, and N¼ 12.89 rpm; (b) 13.13 m/s, 2.388 MW.
4. a¼ 0.145, a0 ¼ 0.0059, and CL¼ 0.80.
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Index

A
Actuator disc, 364–365

alternative proof of betz’s result, 366–367
approach, 200–206
axial flow induction factor for, 367, 370–371
axial force coefficient, 368–370
blade row interaction effects, 204–206
and boundary stream tube model, 365
concept, 201–203
estimating power output, 372
mean-value rule, 203
power coefficient, 367
and radial equilibrium, 203
settling-rate rule, 203–204
theory for compressible flow, 206
theory of, 365–366, 378–379

Aerofoils, 57–58, 59, 109
theory, 172
vortex system of, 373–374
zero lift line, 176–177

Aileron control system, 402–405
Ainley and Mathieson correlation, 81–83
Annulus wall boundary layers, 161–164
Axial flow induction factor for actuator

disc, 367, 370–371
Axial flow turbomachine, 1, 2
Axial velocity density ratio (AVDR), 60
Axial-flow compressors, 143–144

blade aspect ratio, 156–157
and blading arrays, 145
casing treatment, 169–171
control of flow instabilities, 171–172
design of, 144
flow coefficient, 154–155
flow within, 144
mean-line analysis, 144–146
Mollier diagram for stage, 147
multi-stage, 159–165
off-design performance, 157–159
reaction, 155–156

stage loading, 153–154
stage loss relationships and efficiency,

148–149
stall and surge in, 166–172
thermodynamics, 147
three-dimensional flow effects,

160–161
velocity diagrams for stage, 146

Axial-flow turbines, 97–98, 415
blade and flow angle, 422
blade aspect ratio, 420
design of, 100–101, 107–109, 415
efficiency, determining, 417–418
ellipse law, 133, 134
estimating pitch/chord ratio, 421–422
fifty percent reaction stage, 110–113
flow characteristics, 133–136
flow coefficient, 100–101, 104, 121
mean line analysis, 97–98
mean radius design, 417–418
mean radius velocity triangles, determining,

417–418
mechanical arrangement, 416
Mollier diagram of, 103, 110, 111
with multiple stages, 103, 134–136
normal stage, 103
number of stages, 107–108
pitchline analysis, 97–98
reaction effect on efficiency, 114
repeating stage, 103–105
root and tip radii, determining, 418–419
stage loading coefficient, 101,

104, 121
stage losses and efficiency, 105–107
stage reaction, 101, 104
thermal efficiency vs. inlet gas

temperature, 133
thermodynamics of stage, 101–102
turbofan jet engine, 99
variation of reaction at hub, 419–420
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Axial-flow turbines (Cont.)

velocity diagrams of stage, 99–100, 110,
111, 125, 135

zero reaction stage, 109–110, 123, 124

B
Bernoulli’s equation, 11–12
Blade element momentum (BEM) method, 364,

381
parameter variation, 381–383
torque and axial force, evaluating, 383–385

Blade element theory, 174–175, 373–381, 406–
407

and actuator disc theory, 378–379
forces acting on, 376–377
tangential flow induction factor, 374–376

Blade row method, 106
Blade tip correction

performance calculations with, 388–389
Prandtl’s method, 385–387

Blades
aspect ratio, 156–157
cavitation coefficient, 230
centrifugal stresses in rotor, 126–131
cooling systems, 131–132
criterion for minimum number of, 283–285
developments in manufacture, 399–400
diffusion in, 115–118
element efficiency, 176
height and mean radius, 108–109
inlet Mach number, 74–78
loading of, 68–72
pitch control, 400–401
planform, 389–390
row interaction effects, 204–206
section criteria, 398–399
surface velocity distributions, 63–64
tip shapes, 405–406
turbine, 58

C
Camber line, 56–58
Cantilever IFR turbine, 266–267
Cascades, two-dimensional, 53

camber angle, 57
circulation and lift, 67
contraction coefficient, 54
drag coefficient, 66–67
drag forces, 65–66
energy loss coefficient, 62
flow characteristics, 59–64
forces, analysis, 64–67
geometry, 56–58
hub–tip radius ratios, 55–56
incidence effects, 74, 75
lift coefficient, 66–67
lift forces, 65–66
performance parameters, 61–63
pressure rise coefficient, 62
profile loss coefficient, 81
profile thickness distribution, 56–57
space–chord ratio, 55–56, 72
stagger angle, 57
stagnation pressure loss coefficient, 61
streamtube thickness variation, 59–60
total pressure loss coefficient, 61
turbine loss correlations, 80
wind tunnels, 53, 54

Cavitation, 47–49
avoiding, 334
in hydraulic turbines, 330–334
inception, 47–48
limits, 48–49
net positive suction head, 49
tensile stress in liquids, 48–49
vapour formation, 48
vapour pressure, 48–49

Centrifugal compressor, 2, 217, 218, 219
air mass flow, 425
applications of, 217
with backswept impeller vanes, 217–218,

246–249
blade Mach number of, 246, 248
choking of stage, 256–258
design requirements, 425
diffuser, 220, 223–225, 257
effect of prewhirl vanes, 235–236, 237
efficiency of impeller in, 427
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exit stagnation pressure, 431–432
impeller, 220, 222, 249–250, 257
impeller exit, design of, 427–428
impeller exit Mach number of, 248, 247
impeller inlet, design of, 425–427
impeller radius and blade speed, 425
inlet, 257
inlet, optimum design of, 232–236
inlet velocity limitations at eye, 229–230
kinetic energy at impeller, 249–250
mechanical arrangement, 416
Mollier diagram for, 223
overall efficiency, 431–432
performance of, 244–251
pressure ratio, 244–246
stage and velocity diagrams, 220
thermodynamic analysis of, 221–225
volute, 220, 251–252

Centrifugal pump
head increase of, 242–244
hydraulic efficiency of, 242
impellers, 240, 242
volute, 251–252

Centripetal turbine. See 90° Inward-flow radial
turbines

CFD. See Computational fluid dynamics
Coefficient

contraction, 54
drag, 66–67, 173–174, 377–378
energy loss, 62
enthalpy loss, 277
flow, 36, 100–101, 104, 121,

154–155, 340
lift, 66–67, 173–174, 176–177, 377–378
nozzle loss, 277
power, 367, 392
pressure rise, 62
profile loss, 81, 82
rotor loss, 277
stagnation pressure loss, 61, 63
total pressure loss, 61

Compressible flow
actuator disc theory for, 206
diffuser performance in, 225–226

equation, 430
through fixed blade row, 194–195

Compressible fluid analysis, 33–36
Compressible gas flow relations, 12–14
Compressible specific speed, 45–47
Compression process, 19–20
Compressor, 220. See also Centrifugal

compressor
blade profiles, 57–58
high speed, 37–38

Compressor cascade, 68–78
and blade notation, 56
choking of, 78
equivalent diffusion ratio, 70–71
Howell’s correlation, 72, 73
Lieblein’s correlation, 68, 69, 70–71
Mach number effect, 76, 77–78
Mollier diagrams for, 62
performance characteristics, 68–78
pitch–chord ratio, 69
velocity distribution, 69
wake momentum thickness ratio,

69–70, 71
wind tunnels, 54

Compressor stage, 186
high Mach number, 165–166
mean-line analysis, 144–146
off-design performance, 157–159,

197–198
reaction, 155–156
stage loading, 153–154
stage loss relationships and efficiency,

148–149
thermodynamics of, 147
velocity diagrams of, 146

Computational fluid dynamics (CFD), 107
application in axial turbomachines, 209–210
application in hydraulic turbines

design, 334
methods, 53

Conical diffuser, 224, 254–255, 256
Constant specific mass flow, 195–197
Contraction coefficient, 54
Cordier diagram, 44–45
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Correlation
Ainley and Mathieson, 81–83
Howell, 72, 73
Lieblein, 68, 69, 70–71
Soderberg, 83–85, 113

D
Darcy’s equation, 313
Darrieus turbine, 361
Deflection of fluid, 72–74

nominal, 72
Design problem. See Indirect problem
Deviation of fluid, 72–74
Diffuser, 220, 223–225, 251–256

conical, 224, 254–255, 256
design calculation, 254–256
efficiency, 225, 226, 229
performance parameters, 225–229
radial, 253, 254, 255
two-dimensional, 224, 225
vaned, 253–254
vaneless, 252–253

Diffusion factor (DF), 69
local, 68

Diffusion in turbine blades, 115–118
Dimensional analysis, 29–30
Direct problem, radial equilibrium

equation for, 193–194
Drag coefficient, 66–67, 173–174,

377–378
Drag forces, 65–66
Ducted fans, 172–174

E
Efficiency

compressors and pumps, 18
correlation, 118–121
design point, 121–124
diffuser, 225, 226, 229
hydraulic turbines, 17, 305–307, 321
isentropic, 15
mechanical, 15
nominal design point, 272–275
optimum, IFR turbine, 278–283

overall, 15
reaction effect on, 113–115
size effect on turbomachine, 328–330
small stage/polytropic, 18–24
steam and gas turbines, 16–17
turbine, 15, 105–107
turbine polytropic, 22–23

Energy loss coefficient, 62
Enthalpy loss coefficient, 277
Entropy, 9–11
Environmental considerations for

wind turbine, 408–411
acoustic emissions, 410
visual intrusion, 409–410

Equation of continuity, 5
Euler’s equation

pump, 8
turbine, 8, 321–322
work, 8–9

Exhaust energy factor, 292

F
Fans, 217, 220, 221

axial-flow, 172, 174
ducted, 172–174
lift coefficient of, 176–177

First law of thermodynamics, 5–7
Flow angle, 196
Flow coefficient, 36, 100–101, 104, 121,

154–155, 340
Flow velocities, 3–4
Fluid deviation, 72–74
Forced vortex design, 189–190
Forces

drag, 65–66
lift, 65–66

Francis turbine, 2, 265, 317–324
basic equations, 321–324
capacity of, 307–308
cavitation in, 330, 332
design point efficiency of, 306
hydraulic efficiency of, 321
runner of, 318–319
velocity triangles for, 320, 321
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vertical shaft, 318, 322
volute, 317–318

Free-vortex flow, 185–186, 194,
324–325, 325–326

Free-vortex turbine stage, 198–200

G
Gas properties, variation with temperature, 14
Gas turbines, cooling system for, 131

H
Horizontal axis wind turbine (HAWT),

361, 362–363
aerofoils for, 399, 400
blade section criteria, 398–399
energy storage, 364
tower height, 363–364

Howell’s correlation, 72, 73
HP turbine

nozzle guide vane cooling system, 132
rotor blade cooling system, 132

Hydraulic turbines, 265, 303. See also Francis
turbine; Kaplan turbine; Pelton turbine

application ranges of, 307
cavitation in, 330–334
design of, CFD application to, 334
flow regimes for maximum efficiency of,

305–307
history of, 305
operating ranges of, 306
radial-inflow, 305

Hydropower, 303
harnessed and harnessable potential of,

distribution of, 304
Hydropower plants, features of, 304, 305

I
IFR turbines. See Inward-flow radial turbines
Impellers

centrifugal compressor, 220, 222,
249–250, 257

centrifugal pump, 240, 242
efficiency, 427
exit, design of, 427–428

head correction factors for, 241
inlet, design of, 425–427
Mach number at exit, 247, 248
prewhirl vanes at, 235–236
stresses in, 246
total-to-total efficiency of, 249–250

Impulse blading, 81, 82
Impulse turbine stage, 111
Incompressible flow

diffuser performance in, 228–229
parallel-walled radial diffuser in, 253, 255

Incompressible fluid analysis, 30–32
Indirect problem, radial equilibrium equation

for, 185–193
compressor stage, 186
first power stage design, 190–193
forced vortex, 189–190
free-vortex flow, 185–186
whirl distribution, 190

Inequality of Clausius, 10
Inward-flow radial (IFR) turbines, 265, 415

90 degree type. See 90° Inward-flow radial
turbines

cantilever, 266–267
efficiency levels of, 287
optimum efficiency, 278–283
types of, 266–268

90° Inward-flow radial (IFR) turbines, 267–268
cooling of, 297
loss coefficients in, 276–277
Mollier diagram, 269
optimum design selection of, 294–296
optimum efficiency, 278–283
specific speed, significance and application,

291–293
specific speed function, 292
thermodynamics of, 268–270

Isentropic temperature ratio, 416

K
Kaplan turbine, 2, 305, 324–327

basic equations, 325–327
cavitation in, 332
design point efficiencies of, 306
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Kaplan turbine (Cont.)

flow angles for, 328
hydraulic efficiency of, 321
runner of, 325
velocity diagrams of, 326

Kutta–Joukowski theorem, 67

L
Lieblein’s correlation, 68, 69, 70–71
Lift coefficient, 66–67, 173–174, 377–378

of fan aerofoil, 176–177
Lift forces, 65–66
Lifting surface, prescribed wake theory

(LSWT), 407
Ljungström steam turbine, 265, 266
Local diffusion factor, 68
Loss coefficients in 90° IFR turbines,

276–277

M
Mach number, 12, 196, 428, 429

blade, 244, 246
blade inlet, 74–78
compressor stage, 165–166
at impeller exit, 247, 248
radial flow gas turbines, 276

Manometric head, 242
Matrix through-flow method, 208
Mean radius velocity triangles, 417–418
Mean-value rule, 203
Mixed flow turbomachines, 1, 2
Mollier diagram

90° IFR turbine, 269
for axial compressor stage, 147
for axial turbine stage, 103
for centrifugal compressor stage, 223
compression process, 19–20
compressor blade cascade, 62
compressors and pumps, 18
for diffuser flow, 226
for fifty percent reaction turbine stage, 111
for impulse turbine stage, 111
reheat factor, 23, 24
steam and gas turbines, 16

turbine blade cascade, 62
for zero reaction turbine stage, 110

Momentum
equation, 7–9
moment of, 7–8

Multi-stage compressor, 159–165
annulus wall boundary layers, 161–164
off-design operation, 164–165
pressure ratio of, 159–160

Multi-stage turbines, 103
flow characteristics, 134–136

N
National Advisory Committee for Aeronautics

(NACA), 57–58
Net positive suction head (NPSH), 49, 230, 331
Newton’s second law of motion, 7
Nominal fluid deflection, 72
Nozzle loss coefficients, 277
NPSH. See Net positive suction head

O
Off-design performance of compressor,

157–159
Optimum design

of 90° IFR turbines, 280, 294–296
of centrifugal compressor inlet, 232–236
of pump inlet, 230–232

Optimum efficiency, IFR turbine, 278–283
Optimum space–chord ratio, 85

P
Peak and post-peak power predictions, 408
Pelton turbine, 2, 47, 305, 308–317

design point efficiencies of, 306
energy losses in, 314–316
hydraulic efficiency of, 321
hydroelectric scheme, 311, 312
jet impinging on bucket, 310
overall efficiency of, 315, 316
runner of, 309
six-jet vertical shaft, 310
sizing the penstock, 313
speed control of, 311–313
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surge tank, 311
water hammer, 313

Performance prediction codes, wind turbine,
406–408

Power coefficient, 367, 392
at optimum conditions, 397

Prandtl’s tip correction factor, 385–387
Prescribed velocity distribution (PVD)

method, 57
Pressure loss coefficient

stagnation, 61, 63
total, 61

Pressure ratio of multi-stage compressor,
159–160

Pressure rise coefficient, 62, 229
Profile loss coefficient, 81
Pump, 220, 221. See also Centrifugal pump

inlet, optimum design of, 230–232
radial-flow, 221

R
Radial diffuser, 253, 254, 255
Radial equilibrium

direct problem, 193–194
equation, 183–185, 193
fluid element in, 184
indirect problem, 185–193
theory of, 183–185

Radial flow gas turbines, 265
basic design of rotor, 270–271
cantilever type, 266–267
clearance and windage losses, 296–297
cooling of, 297
criterion for number of vanes, 285, 286
Francis type, 265
IFR type. See Inward-flow radial turbines
incidence loss, 276–277
Ljungström steam type, 265, 266
mach number relations, 276
nominal design point efficiency, 272–275
nozzle loss coefficients, 277
optimum design selection, 294–296
optimum efficiency considerations, 278–283
rotor loss coefficients, 277

spouting velocity, 271
velocity triangles, 267, 268

Radial flow turbomachine, 1
Reaction, turbine stage, 101, 104

fifty percent, 110–113
zero value, 109–110, 123, 124

Reaction turbine, 317
Reheat factor, 23–24
Relative eddy, 238
Relative maximum power coefficient, 367
Relative velocity, 4, 9
Reynolds number correction, 83
Rotating stall in compressor, 167
Rothalpy, 9, 102
Rotor, 149–153

compressible case, 149–150
incompressible case, 150–153

Rotor blade configurations, 389–396
blade variation effect, 390
optimum design criteria, 393–396
planform, 389–390
tip–speed ratio effect, 390–393

Rotor design, 270–271, 286–290
nominal, 270–271
Whitfield, 280–283

Rotor loss coefficients, 277

S
Scroll. See Volute
SeaGen tidal turbine, 304, 348–349
Second law of thermodynamics, 9–11
Secondary flows, 210–211

vorticity, 210
Settling-rate rule, 203–204
Slip factor, 236–242

Busemann, 240–241
correlations, 238–242
Stanitz, 241
Stodola, 239
Wiesner, 241–242

Soderberg’s correlation, 83–85, 113
Solid-body rotation. See Forced vortex design
Space-chord ratio, 422
Specific diameter, 40–47
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Specific speed, 40–47, 333
compressible, 45–47
efficiency for turbines, 293
significance and application of, 291–293

Spouting velocity, 271
Stage loading, 36, 101, 104, 121, 153–154
Stagger angle, 57
Stagnation enthalpy, 6, 12
Stagnation pressure loss coefficient, 61, 63
Stall and surge in compressor, 166–172
Steady flow

energy equation, 6–7
moment of momentum, 7–8
momentum equation, 7–9

Steam turbines, 97
low pressure, 98

Streamline curvature method, 207–208
Stresses in turbine rotor blades, 125–131

centrifugal, 126–131
Suction specific speed, 333

T
Tangential flow induction factor, 374–376
Tangential velocity distribution, 190
Thoma coefficient, 331, 333
Three-dimensional flows in axial turbomachines,

183–215
Through-flow problem

computer-aided methods of solving,
206–208

techniques for solving, 207–208
Tidal power, 304, 346–349. See also

SeaGen tidal turbine
categories of, 347

Tidal stream generators, 347–348
Tides

neap, 346, 347
spring, 346, 347

Time-marching method, 208
Tip–speed ratio, 379, 390–393
Total-to-static efficiency, 17, 272, 294–295

effect of reaction on, 113–115
of stage with axial velocity at exit,

123–124, 125

Total-to-total efficiency, 16
of fifty percent reaction turbine stage,

121–122
of impeller, 249–250
of turbine stage, 105
of zero reaction turbine stage, 123, 124

Turbine cascade (two-dimensional), 78–92
Ainley and Mathieson correlation, 81–83
Dunham and Came improvements, 81
flow exit angle, 88–91
flow outlet angles, 81, 82
limit load, 91–92
optimum space to chord ratio, 85, 86
Reynolds number correction, 83
Soderberg’s correlation, 83–85
turbine limit load, 91–92
turbine loss correlations, 80
Zweifel criterion, 85–88

Turbines
axial-flow. See Axial-flow turbines
Francis. See Francis turbine
free-vortex stage, 198–200
high speed, 38–40
hydraulic. See Hydraulic turbines
Kaplan. See Kaplan turbine
off-design performance of stage, 197–198
Pelton. See Pelton turbine
radial flow gas. See Radial flow gas turbines
reaction, 317
Wells. See Wells turbine
wind. See Wind turbine

Turbochargers, 415
advantages, 415
types, 415

Turbomachines
categories of, 1
as control volume, 7–8, 30
coordinate system, 2–4
definition of, 1–2
efficiency, size effect on, 328–330
flow unsteadiness, 24–25
performance characteristics of, 32–33

Turbomachines, axial
blade rows in, 204
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design of, 209–210
solving through-flow problem in, 206–208

Two-dimensional cascades. See Cascades,
two-dimensional

U
Unsteadiness paradox, 25

V
Vaned diffuser, 253–254, 430–431
Vaneless diffuser, 252–253

space, flow in, 428–430
Vapour pressure, 48–49
Velocity, spouting, 271
Velocity triangles for root, mean and tip radii,

421, 422
Vertical axis wind turbine (VAWT), 361
Volute, 431

centrifugal compressor, 220, 251–252
centrifugal pump, 251–252

Vorticity, secondary, 210

W
Wave power, 304. See also Wells turbine
Wells turbine, 304, 334–335, 336

blade of, velocity and force vectors acting
on, 337

blade solidity effect on, 340
characteristics under steady flow

conditions, 344
design and performance variables, 338–341
flow coefficient, effect on, 340

hub–tip ratio, effect on, 340
operating principles, 335–336
and oscillating water column, 334–335
self pitch-controlled blades, 341, 342–346
starting behaviour of, 341, 342
two-dimensional flow analysis, 336–338

Whirl distribution, 190
White noise, 48
Whitfield’s design of rotor, 280–283
Wind energy, availability, 357–359
Wind shear, 363–364
Wind turbine, 357, 410–411

blade section criteria, 398–399
control methods, 400–405
environmental considerations, 408–411
historical viewpoint, 359
performance testing, 406
power coefficient of, 367
power output, 372–373
Prandtl’s blade tip correction for, 385–387
rotor blade configuration, 389–396
solidity, 379–380
stall control, 401
types of, 360–364

Windmills, 359

Z
Zero lift line of aerofoil, 176–177
Zero reaction turbine stage, 109–110

Mollier diagram for, 110
total-to-total efficiency of, 123, 124

Zweifel criterion, 85–88
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